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Highlights 
 This study systematically investigated the co-existing impact of multiple dynamic factors on the 

performance of EMG pattern recognition system (EMG-PR). 
 An invariant time-domain descriptor was proposed to resolve such co-existing impacts with its 

performance validated 
 The proposed method significantly mitigated combined impact of such factors on the performance 

of the EMG-PR system. 
 The outcomes of the study would be potential for improving the clinical robustness of 

multifunctional myoelectric prostheses. 
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Background and Objective: Mobility of subject (MoS) and muscle contraction force 

variation (MCFV) have been shown to individually degrade the performance of multiple 

degrees of freedom electromyogram (EMG) pattern recognition (PR) based prostheses 

control systems. Though these factors (MoS-MCFV) co-exist simultaneously in the 

practical use the prosthesis, their combined impact on PR-based system has rarely been 

studied especially in the context of amputees who are the target users of the device.  

Methods: To address this problem, this study systematically investigated the co-existing 

impact of MoS-MCFV on the performance of PR-based movement intent classifier, using 

EMG recordings acquired from eight participants who performed multiple classes of 

targeted limb movements across static and non-static scenarios with three distinct muscle 

contraction force levels. Then, a robust feature extraction method that is invariant to the 

combined effect of MoS-MCFV, namely, invariant time-domain descriptor (invTDD), is 

proposed to optimally characterize the multi-class EMG signal patterns in the presence of 

both factors.  

Results: Experimental results consistently showed that the proposed invTDD method 

could significantly mitigate the co-existing impact of MoS-MCFV on PR-based 

movement-intent classifier with error reduction in the range of 7.50%~17.97% (p<0.05), 

compared to the commonly applied methods. Further evaluation using 2-dimentional 

principal component analysis (PCA) technique, revealed that the proposed invTDD 

method has obvious class-separability in the PCA feature space, with a significantly 

lower standard error (0.91%) compared to the existing methods.  

Conclusion: This study offers compelling insight on how to develop accurately robust 

multiple degrees of the freedom control scheme for multifunctional prostheses that would 

be clinically viable. Also, the study may spur positive advancement in other application 

areas of medical robotics that adopts myoelectric control schemes such as the electric 

wheelchair and human-computer-interaction systems. 

 
Keywords: Pattern recognition; Upper-limb prostheses; Electromyogram (EMG); 

Muscle contraction force variation; Subject mobility; Maximum Voluntary Contraction 

(MVC). 

1. Introduction 
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The loss of upper extremity motor function caused by amputation or neurological 

disorder greatly restrict individuals from fully exploring their environment during daily 

life activities [1]. To adequately restore such function particularly in amputees, the use of 

assistive medical robotic devices known as prostheses powered by biological signals is 

considered a viable option [2-5]. Meanwhile, surface electromyogram (EMG) signal 

recorded during muscle contraction is considered to be the most widely adopted source of 

control signal for prosthetic control due to its rich neural information content [6]. 

Remarkably, major advances in prosthetic control technologies have been made with 

pattern recognition (PR) based approaches since they could potentially support multiple 

degrees of freedom (MDF) functionalities in an intuitive manner [7-11]. Also, with 

adequate implementation of the PR-based method, an accurately robust control 

mechanism for MDF prosthetic devices could be seamlessly realized [10-15]. In this 

regard, incremental research efforts have been made towards developing intelligently 

robust PR-based method with improved controllability. For instance, COAPT engineering 

(a company based in Chicago, U.S.A) recently built the first commercially available 

intuitive PR-based control systems for advanced prosthetic arms [16]. Despite the 

advancement made by COAPT engineering [16], Open Bionics [17], Ottobock [18], and 

other prostheses manufacturers in the recent years, the available MDF PR-controlled 

prostheses are still being challenged by some confounding factors that in reality limit their 

clinical and commercial success [16-21].   

Recent studies have shown that such confounding issues mainly occur due to 

inevitable alterations in EMG signal characteristics caused by various inevitable 

physiological and physical factors. These factors include electrode shift during prostheses 

donning or usage [22-23], muscle fatigue [24], changes in arm position while observing a 

set of targeted limb movements [13, 25-27], muscle contractions force variation (MCFV) 

[28-30], and alterations in EMG signal patterns arising from the mobility of subject (MoS) 

[10, 31], amongst others. In an attempt to address these issues, Scheme et al. conducted a 

study and reported that MCFV would significantly degrade the performance of PR-

controlled prostheses with limb movement intent prediction error of between 32% ~ 44% 

[33]. Nazarpour et al. further demonstrated that the degradation arising from MCFV could 

be attributed to modifications in time-frequency characteristics and probability density 
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function of EMG signals associated with the targeted limb movements [34]. They also 

reported that MCFV may have negative impact on the overall control performance of the 

prostheses if neglected [34]. In similar manner, the inevitable changes in EMG signal 

patterns resulting from MoS has been proved to have a considerable impact on the 

performance of PR-based movement intent predictor, causing a reduction in the overall 

system performance in the range of 8.98% ~ 11.35% for non-amputee and amputee 

subjects [10, 31]. In an attempt to examine the impact of multiple factors on the 

performance of myoelectric PR-based system, Khushaba et al. conducted a study on the 

joint influence of forearm orientation and muscle contraction force level on the accuracy 

of myoelectric PR-based system [27]. Subsequently, they proposed a solution to address 

the issue, and this represents one of the few studies in this direction to date. 

Essentially, MoS and MCFV are two factors that co-exist simultaneously in the 

practical application of MDF prostheses, but their impact on the performance of PR-based 

limb movement-intent classifier (a core component that determines the controllability of 

the prostheses) has only been studied in a mutually exclusive context. Meanwhile, their 

combined effect remains unknown especially for amputees who are the final users of the 

prostheses. Hence, this constitute a research gap in the field of PR-based system targeted 

towards upper-limb prostheses control. Therefore, it is hypothesized that the performance 

degradation of the available myoelectric PR-based control systems may be subjectively 

linked with the non-stationarity of the EMG signal patterns caused by the co-existence of 

MoS and MCFV. Additionally, we hypothesized that, alterations in the signal patterns 

arising from the combined impact of MoS and MCFV may differently influence the 

recognition rate of individual targeted limb movement, thus, degrading the overall 

performance of the PR-based prosthetic control system.   

Towards bridging this research gap, this study systematically investigated the co-

existing impact of the two dynamic factors (MoS and MCFV) on the performance of 

myoelectric pattern recognition system when utilized to decode multiple-classes of 

targeted limb movements. The investigation was conducted on the bases of experimental 

protocols that involved the acquisition of surface EMG signals associated with multiple 

classes of upper-limb movements in four different scenarios using three distinct muscle 

contraction force levels, obtained from eight participants (including amputees and able-

                  



6 
 
 
 

bodied subjects). Subsequently, the sensitivity of the EMG signal patterns to the combined 

effect of MoS-MCFV in the context of limb movement-intent decoding were examined, 

and a new feature extraction method that attempted to mitigate the co-existing impact of 

both dynamic factors is proposed. Moreover, the performance of the proposed feature 

extraction method in terms of resolving the co-existing effect of MoS-MCFV on 

myoelectric PR- system was studied in comparison to other notable existing feature 

extraction methods using various evaluation metrics. In summary, the main contributions 

of this study are in three folds: 

a) The dynamic co-existence of MoS and MCFV on the performance of PR-based system 
was systematically investigated towards providing consistently accurate and robust 
control mechanism for MDF prostheses. It should be noted that this issue has rarely 
been studied to date, to the best of our knowledge. 

b) Towards resolving this issue, this study proposed an invariant time-domain descriptor 
feature method, whose performance was extensively verified using different metrics. 

c) The study further examined how the combined impact of MoS-MCFV could 
differently influence the prediction of individual targeted limb movement, towards 
providing proper insight on ways to improve the overall control performance of the 
PR-based control systems. 

2. Material and Methods 

2.1 Participant information 

Considering the aim of the study, a total of eight subjects (all right hand dominated) 

were recruited for the EMG data collection task which was done based on a systematically 

designed experimental protocols. Two out of the subjects are transradial amputees whose 

residual arm length ranges between 71cm ~ 74cm from their shoulder blade downwards 

while the remaining six subjects are non-amputees, including 4 males and 2 females. Upon 

proper examination of the subjects, we found that they are healthy and had no trace of 

neuromuscular disease that may affect the quality of the acquired EMG signals. 

Afterward, they were informed about the aim of the study and experimental protocol 

designed for the data collection. A consent form indicating their willingness to participate 

in the study with issuance of permission for publication of their data was signed by all the 
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subjects and the study protocol was approved by the Shenzhen Institutes of Advanced 

Technology, Chinese Academy of Sciences’ Institutional Review Board. 

2.2 Equipment setup   

 A wireless surface EMG data collection system manufactured by Delsys Inc., Boston, 

was utilized for the data acquisition task in the study. Prior to the EMG recordings, the 

area on each participant’s skin mapped out for the sensors’ placement was cleaned with 

alcohol pads to eradicate skin oil that might distort the signal quality. For the amputees, 

eight wireless bipolar EMG-signal sensors were placed on their residual arms’ muscles, 

with 6 of the sensors distributed around the forearm muscles and the remaining two on the 

extensor/flexor muscles. Meanwhile, Figure 1a shows the electrode placement on the 

residual arm muscles of an amputee. Note that the orientation and positioning of the 

sensors were followed by a preliminary assessment of the stump muscles’ characteristics 

especially in the amputees to locate potential sites on the forearm [35]. Seven classes of 

forearm movements including: hand close and open (HC and HO), wrist flexion and 

extension (WF and WE), wrist supination and pronation (WS and WP), and no-movement 

(NM), were designed for the study and the sequence/duration for which each targeted limb 

movement was performed is shown in Figure 1b, using wrist flexion (WF) as the 

representative limb movement. Meanwhile, the targeted limb movement in this case (WF) 

is performed five times and each represents a trial, thus resulting in T1, T2, T3, T4, and 

T5, as shown in Figure 1b, with a rest session of about 5 seconds (light gray region) 

introduced between consecutive trials. 

 

 

 

 

 
 

 
 
Figure 1: Experiment setup showing electrode placement/configuration on the residual arm muscles of an 
amputee (a), the sequence and duration for performing each targeted limb movement tasks (b). 

2.3 Experimental procedure and Data acquisition 

Time/s 
5 1 11 15 21 25 30 35 41 45 

(b) 

…T1   T2   T3   T4   T5 

(a) 
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 Towards investigating the co-existing impact of MoS-MCFV on the characterization 

of multi-class EMG signal patterns with respect to PR-based movement-intent 

classification, experiments that involved the acquisition of EMG data for the above-

described classes of targeted limb movements was designed. Considering the first 

dynamic factor MoS, the subjects were instructed to perform the seven classes of targeted 

limb movements while they assume four different scenarios including a static scenario 

(sitting: S1) and three non-static scenarios (S2: ground level walking: S3: ascending a 

stair, and S4: descending a stair). Meanwhile, they were required to perform the limb 

movement tasks in each scenario using three different muscle contraction levels (20%, 

50%, and 80% MVCs: Maximum Voluntary Contractions), that is varying the second 

dynamic factor of MCFV. To ensure benchmark experimental procedure, the specified 

MCFV were designed in line with recommendations from previous studies [28-30, 32-34], 

and further detail is provided as follows. 

a) Low muscle contraction force: In this session, participants are required to utilize 20% 

MVC force to complete the target limb movements at a time. To ensure that the exerted 

force corresponds to the expected MVC level, a visual feedback scheme that reflects the 

muscle contraction level as a function of the amplitude of the EMG recordings was 

provided. During the pre-experiment sessions, the reports obtained from the participants 

indicated that the visual feedback scheme was helpful in aiding them to modulate their 

arm muscles in line with 20% MVC while observing the limb movement tasks. 

b) Medium muscle contraction force: In this session, the participants were aided to 

perform each class of limb movement utilizing a medium muscle contraction force of 

approximately 50% MVC, which is relatively higher than the low muscle contraction 

force level.  It is noteworthy that visual feedback scheme also aided participants to 

activate their muscles with the required medium level of force while observing their 

movements. 

c) High force level: In this session, each participant is required to complete a specified 

forearm movement with a muscle contraction force greater than the medium muscle 

contraction force. To be precise, with the help of the feedback scheme, the subjects were 

able to modulate their arm muscle with about 80% MVC while performing the tasks. 

Meanwhile, the participants were trained on contracting their muscles with a high force 
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that is comfortable to avoid attaining the MVC since it may cause muscle fatigue 

especially for amputees whose residual arm muscles have not been put to use for a long 

time. Figure 2 shows the conceptualized framework with which the experiments were 

conducted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: A representation of the experimental settings for surface EMG recordings with respect to the co-
existence of MoS and MCFV factors.  
 

  

Static Scenario (S1) and Non-Static Scenarios (S2, S3, and S4) 
 

Ascending (S3) Sitting (S1) Walking (S2) Descending (S4) 

HIGH FORCE LEVEL 

MODERATE FORCE LEVEL 

LOW FORCE LEVEL 

HIGH FORCE 

LEVEL 

 

MODERATE    

FORCE LEVEL 
 

LOW FORCE 

LEVEL 
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 In scenario S1, the subjects performed all the seven classes of targeted limb 

movements in a sitting posture under the described muscle contraction force levels (20%, 

50%, and 80% MVC), and the corresponding EMG signals were recorded and stored for 

further analysis. For each specific force level, each subject performed five experimental 

trials (Figure 1b), of which each lasted for about 5-6 seconds, enabling the acquisition of 

sufficient data required for training and testing purposes. It is noteworthy that due to the 

complexity of the experiments, a rest time of about 5 seconds was introduced between 

successive limb movement classes to avoid muscle or mental fatigue. Also, when 

switching from one scenario to another, each subject was allowed to rest for 

approximately 5-8 minutes before continuing the experiments. These precautions were 

necessary to ensure the recording of high-quality signal throughout the experiments. In 

scenario S2, the participants performed the limb movement tasks on a flat ground of about 

10 meters long while walking with an average speed of about 1.0 m/s. Meanwhile in the 

stairs terrain (scenario S3 and S4, characterized by 12 steps with depth and elevation of 

0.25m and 0.15m, respectively), the subjects also performed the limb movement tasks 

while ascending/descending the stair with an average speed of 1.0 m/s. It should be noted 

that this was found to be convenient for the participants after a preliminary examination 

[10, 31], thus it was adopted. It should be noted that the recorded EMG signals were 

preprocessed and analyzed using MATLAB version R2017b (Mathworks, USA) 

programming tool. 

2.4 Data preprocessing 

 To effectively attenuate external interferences in the acquired EMG recordings, we 

first applied a 50 Hz notch filter to the signal that was sampled at 1024 Hz to eliminate the 

inherent power line noise. After analyzing the characteristics of the resulting signals, we 

applied a 5th order Butterworth filter with frequency bands between 20 Hz (lower band) 

and 500 Hz (upper band) to further preserve the useful components of the signal [2, 39]. 

These procedures are often required to enhance the succeeding processes that involves 

extraction of informative features utilize to characterize the signal patterns and recognition 

of the patterns via machine learning algorithm [2-5]. It should be noted that the sampling 

frequency and its parameters as utilized in this study would not influence the 

characteristics of the extracted features across subjects since the same equipment and 
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same sampling parameters were utilized in all the experiments. However, in situation 

where the EMG recordings are made using different equipment and sampling parameters, 

the characteristics of the extracted features may be somewhat inconsistent, thus resulting 

in degradation in performance of the pattern recognition system. Thus, one way to deal 

with this issue would be to ensure the usage of the same equipment and sampling 

parameters through the experimental sessions across subjects.    
 

2.5 Feature extraction and classification 

 The choice of feature set is considered a core stage in the development of PR-based 

scheme for MDF prostheses control [39-42], and depending on the application 

requirements it can be extracted either in time or frequency domain or the combination of 

both [43]. In the practical settings, an ideal feature set should be invariant to factors 

causing alterations in EMG signal patterns, and such feature should possess the capability 

to maintain distinct class separability that will effectively distinguish the signal patterns of 

different limb movements. In this regard, an adequately robust feature extraction method 

is proposed to optimally characterize EMG signals in the presence of the co-existing 

impact of MoS and MCFV. And this would enable the realization of consistently accurate 

limb movement intent decoding based pattern recognition technique. Prior to the EMG 

feature extraction task, this study adopted a sliding segmentation technique with window 

length of 150ms and increment of 100ms. For the sake of clarity and proper 

understanding, the step-wise procedure for extracting the proposed feature set from EMG 

recordings to mitigate the co-existing impact of MoS and MCFV on PR-based movement 

intent classifier, is conceptualized in Figure 3 as follows. 
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Figure 3: Conceptualization of the acquired EMG signal preprocessing and the step-wise procedure for 
extracting the proposed feature set. (A). A model of the Acquired EMG signal, (B). Data preprocessing 
steps, (C) Proposed feature extraction procedure, (D) The proposed integrated five-dimensional feature 
vector. 
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 In constructing the proposed feature extraction framework as conceptualized in 

Figure 3, the following sequential steps were taken. Firstly, the acquired surface EMG 

signal is represented mathematically using Equation (1).  

(݊)ݔ = ෍ℎ(ݎ)݁(݊ − (ݎ + (݊)ݓ
ேିଵ

௥ୀଵ

																(1) 

 
where ݔ(݊) denote the modeled surface EMG recordings for each class of the targeted 

limb movement, e(n) is the corresponding firing impulse, h(r) represents the motor unit 

action potential that denote a summation  of the muscle fibers associated to a single 

motor unit, w(n) is  the zero mean additive white Gaussian noise, and N stands for the 

number firing motor units per time.  

Given that ݔ(݊) is the modeled EMG signal represented in Equation (1), and n = 1, 2, 

3, … N, the feature extraction process begins with the computation of the square 

descriptor and its integral value (݀݁݊݀݁ݐ݋	ݏܽ	ܨ) to obtain the innate energy information 

in different muscle contraction levels of the signal, as expressed in Equation (2). 

ܨ = න ݐଶ݀(t)ݔ
்

଴
= 						෍ ଶ[n]ݔ

ேିଵ

௡ୀ଴

																				(2) 

Here, the parameter T represents the observation time of the signal per window segment 

(typically 150 ms, as in Figure 3.), and N denotes the number of samples per segment used 

in the computation. The extracted feature, F was further normalized using a normalization 

technique to obtain Equation (3).  

 

ଵߛ = 	 ෠ܨ = 	 (ி)	ഊ

	ఒ
                                             (3) 

 

where the parameter 0.1	to	set	was	value	whose	coefficient	normalization	the	is	ߣ	 . 

Notably, this is consistent with the Parseval’s theorem which state that the energy content 

in a signal could be obtained by using either time or frequency-based representation of the 

signal [25, 27]. Hence, the normalized integral square descriptor, ߛଵ  holds information 

associated with the signal spectrum that transverses all the contraction force levels.   
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 To estimate the contraction force level for individual targeted limb movement while in 

the static scenario and at the same time discriminate the signal from inherent noise, the 

first and second order derivatives (݂ᇱ and	݂ᇱᇱ) of the signal in each analysis window were 

computed based on the difference between two adjacent entries of ݔ[݊]	as shown in 

Equation (4).  

 

݂ᇱݔ[݊] = 	
݊]ݔ + 1] − 	[݊]ݔ

[݊]ݔ∆ , 								݂ᇱᇱݔ[݊] = 	
݊]ݔ + 1] − [݊]ݔ2 + ݊]ݔ − 1]		

ଶ([݊]ݔ∆) 				(4) 
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Rݔଵ[݊]and	Rݔଶ[݊]) were calculated and normalized to produce ߚመଵ	 andߚመଶ, respectively, as 

shown in Equations (5) and (6). Meanwhile, a variant of the descriptors in Equations (2) 

and (5), have been applied to tackle a different multiple factor problem in the domain of 

myoelectric pattern recognition previously [27, 29, 45].  It should be noted that this study 

adopted the box-cox power transformation technique to normalize the extracted features 

and the optimal value of λ was determined by examining a range of values from -1 to +1 

with a jump of 0.01 using box-cox function. Also, a previous work suggested that a value 

of 0.1 would be appropriate for the λ parameter [29]. 
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Where ܰ is the sample size of the recorded EMG signal and	ߣ = 0.1.  The coefficient of 

regularization (represented	as	ߛଶ ) that correlates with the signals in a given analysis 

window with respect to the contraction force for a targeted limb movement was computed 

using Equation (2) and (6) 

ଶߛ =
መଶߚ	

መଵߚ	 ∗ ଵߛ	
																																																																										(7) 
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 	    Markedly, the absolute sum (ASS) descriptor which allows full-wave rectification of 

EMG signals within a specific time frame was proposed in a previous study [5]. This 

descriptor was improved by applying a standardization procedure to obtain an adapted 

version (ߛଷ) which obtains additional information that construct similar patterns across 

muscle contraction levels and subject mobility (Equation 8). 
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  Furthermore, for proper representation of the underlined signal patterns in different 

scenarios, the signal’s amplitude along the first non-singleton dimension is obtained by 

computing the difference between the maximum and the minimum value of	ݔ[݊],		using 

the second order approximate derivative and thereafter normalized as shown in Equation 

(9) and (10). Common-mode information across the mobile scenarios per movement class 

were extracted using the mean logarithm of the signal and normalized using Equation (11) 

and (12) respectively. 

.  

ܣ = 	ඩ෍(max(	݂ᇱᇱݔ[݊])− min(	݂ᇱᇱݔ[݊]))ଶ௡

ே

௡ୀଵ

																(9) 

ସߛ = መܣ = 	
ఒ	(ܣ)

ߣ	 																																																							(10) 
 

ܯ = Logቌ
1
ܰ
൭෍(ݔ[݊])ଶ

ே

௡ୀଵ

൱ቍ																																(11) 

ହߛ = ෡ܯ	 = 	
ఒ	(ܯ)

ߣ	 																																																						(12) 
 

                  



16 
 
 
 

Afterward, these features were concatenated to form a five-dimensional feature vector 

,ଵߛ) ,ଷߛ	,ଶߛ ,ସߛ	   ., which is expressed as the invariant time-domain descriptor (invTDD)	ହ)ߛ

 By using the two strategies described in Section 2.6, we investigated the extent to 

which the proposed invTDD method would minimize the dynamic co-existing impact of 

MoS and MCFV on PR-based system, and further compared its performances with the 

commonly applied feature extraction methods described as follows. 

a) The time-dependent spectral domain (TD-PSD) feature set, recently proposed by Al-

Timemy et al. in [29]. 

b) The four frequently utilized time-domain descriptors (TD4) comprising of, zero-

crossings, mean absolute value, slope sign change, and waveform length [36]. 

c) A recently proposed two-dimensional time-domain descriptor identified as NOV in 

this study [5]. 

d) A combination of the 5th order autoregressive (AR) coefficients and the root mean 

square (RMS) feature denoted as TDAR in this study [37-38]. 

e) The root means square descriptor that has been widely considered for characterizing 

EMG signal patterns [2]. 
 

 To decode the subjects’ limb movement intent from the constructed feature matrix, 

two classification algorithms including support vector machine (SVM) and linear 

discriminant analysis (LDA) were utilized. Meanwhile, in other to reduce human 

interference and as well find optimal data combination five-fold cross validation 

technique [46], was employed for the partitioning of the extracted feature matrix into 

training and testing sets. The rationale behind considering these classification schemes is 

that their performances are relatively good,  especially when considering multi-class 

problems [5, 8, 10, 13]. Also, previous studies have re-iterated the need to utilized 

optimal classification algorithm especially in the field of pattern recognition [47-48]. 

Thus, we built a radial basis function driven SVM classifiers, and compared its 

classification performance with that of the LDA classifiers. Notably, we found that SVM 

achieved slightly lower performance in comparison to the LDA for some subjects. The 

LDA algorithm runs much faster than its SVM counterpart due to its relatively simple 

structure and it could be easily implemented in real-time, hence it was adopted [10, 14-

15].  
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2.6 Data Analysis and performance evaluation 

Based on the two approaches defined below, the combined impact of MoS and 

MCFV on EMG-PR-based motion intent predictor was systematically investigated:  

a) Intra-Scenario analysis: This involves assessing the performance of the PR-based 

classifiers when trained and tested with data obtained from the same scenarios with 

respect to the different muscle contraction force levels; and  

b) Inter-Scenario analysis: this involves evaluating the PR-based classifiers’ 

performance when the training and testing data comes from different scenarios across the 

three muscle contraction force levels.     

  For both strategies, the evaluation metrics including classification error (CE), Mathew 

Coefficient Correlation (MCC), and F1-Score, were considered and their descriptions are 

given as follows. The CE, a commonly applied evaluation metric which represent the 

number of non-correctly identified samples over the sum of all samples (equation 13) was 

utilized in the current study. The MCC that has been widely applied in multiclass 

problem, was also adopted for evaluation in the study (equation 14). Also, the MCC is 

considered to be a highly informative metric for assessing classification tasks since it is 

considered to be a balanced ratio amongst the four confusion matrix parameters (false 

positives, true positives, true negatives, and false negatives) [44]. 
 

ܧܥ = 	ே௨௠௕௘௥	௢௙	௜௡௖௢௥௥௘௖௧௟௬	௖௟௔௦௦௜௙௜௘ௗ	௦௔௠௣௟௘௦
்௢௧௔௟	௡௨௠௕௘௥	௢௙	௧௘௦௧௜௡௚	௦௔௠௣௟௘௦

∗ 100%										(13) 

 

ܥܥܯ =
(ܶܲ ∗ ܶܰ) − ܲܨ) ∗ (ܰܨ

ඥ(ܶܲ + ܲܶ)(ܲܨ + ܰܶ)(ܰܨ + ܰܶ)(ܲܨ + (ܰܨ
					(14) 

 

Where TP denotes the count of true positives, TN represents the count of true negatives, 

FP represents a number of false positives, and FN is the number of false negatives as 

obtained from a confusion matrix. In addition, F1_Score was also employed for the 

evaluation process which was computed based on equations 15, 16, and 17. 

Recall =  ்௉
்௉ାிே

																																									(15) 

 

Precision =  ்௉
்௉ାி௉

 																																					(16) 
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	݁ݎ݋ܿܵ_1ܨ =
2 ∗ ܴ݈݈݁ܿܽ ∗ ݊݋݅ݏ݅ܿ݁ݎܲ
ܴ݈݈݁ܿܽ + ݊݋݅ݏ݅ܿ݁ݎܲ 										(17) 

 

 

 Furthermore, the significant different test between the proposed methods and the 

other feature extraction methods were performed using analysis of variance (ANOVA) of 

single factor with a confidence level set to p<0.05. Also, the Bonferroni correction 

approach was utilized for the post-hoc analysis.  

3.0 Results and Discussion 

3.1 Intra-Scenario analysis  

 Based on individual scenario (S1, S2, S3, and S4), we investigated how the proposed 

invTDD method mitigated the co-existing impact of MoS-MCFV on the performance of 

PR-based movement intent classifier, and further analyzed the obtained results in 

comparison to those of the commonly applied feature extraction methods in the following 

sub-sections. It should be noted that the analyses were done based on the combination of 

results obtained from the amputees and non-amputees subjects. 

3.1.1 Considering EMG recordings from the static scenario (S1)  

 By utilizing data from S1 (sitting position), the PR-based movement classifier was 

individual trained per time using feature matrix obtained from each of the muscle 

contraction force levels (say low or medium or high), and tested with the combination of 

feature matrices from the three force levels. Based on the obtained results (Figure 4a), it 

can be seen that the proposed invTDD method achieved significantly lower CE of 9.33% 

(Train low: Test all), 7.36% (Train medium: Test all), and 11.27% (Train high: Test all) 

across subjects and movement classes in comparison to the other methods considered. 

Moreover, the invTDD recorded an average CE of 9.32% across muscle contraction force 

levels compared to the TD-PSD (CE = 18.17%, p = 0.008), TD4 (CE = 23.66%, p = 

0.029), NOV (CE = 18.32%, p = 0.017), TDAR (CE = 15.42%, p = 0.029), and RMS (CE 

= 26.36%, p = 0.016).  
   

3.1.2 Considering EMG recordings from the non-static scenarios (S2, S3, and S4) 

 The training and testing procedures employed in scenario S1 was also applied to the 

data obtained from S2 (level ground walking), and in like manner, the proposed invTDD 
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method achieved a mean CE of 12.64%, which is much lower than that of the commonly 

applied TD-PSD (20.47%), TD4 (28.44%), NOV (23.11%), RMS (30.61%), and TDAR 

(20.14%) as presented in Figure 4b. This result indicates that the invTDD method was 

able to attenuate the combined impact of MoS-MCFV by achieving a substantial reduction 

in CE of between 7.50%~17.97% (at p<0.05) in scenario S2, compared to the previously 

proposed methods. By analyzing the plots in Figure 4c and 4d, comparable performance 

trends were observed when the feature matrices constructed from the data of scenarios S3 

and S4 (ascending and descending of stairs terrains) were employed in the training and 

testing of the built PR-based movement-intent classifier. Interestingly, training the PR-

based system with data from the moderate force level appeared to generalize well than 

those from low or high muscle contraction force levels as shown in Figure 4. Hence, we 

decided to train the PR-based limb movement-intent classifiers with feature matrices 

extracted from the medium muscle contraction force level data and tested the classifiers 

using concatenated features across muscle contraction force levels for each scenario to 

obtain the MCC values. 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

                  



20 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Intra-scenarios analysis classification results averaged across subjects and movement. Note that 
the data used for training is pulled from a specific muscle contraction force level while the test data include 
data from all muscle contraction force levels in scenario S1 (a), S2 (b), S3 (c), and S4 (d). The error-bars 
denote standard errors. Note: Train-L, Train-M, and Train-H, represent training with dataset from low, 
medium, and high muscle contraction force levels, respectively. 
 

3.1.3 Mathew correlation coefficient analysis 

After examining the combined impact of MoS-MCFV on the PR-based movement-

intent classifier in the context of Intra-Scenario analysis, the performances of the features 

were further studied using the MCC metric that was defined earlier. The MCC analysis 

was carried out by constructing the confusion matrices that corresponds to each of the 

above described scenarios in section 3.1, after which their equivalent MCC values were 

computed. To visualize the extent to which the impact of both factors (MoS-MCFV) could 

be mitigated on PR-based movement intent classifier, radar charts were plotted using the 

MCC score of the proposed invTDD method and those of other methods on the basis of 
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individual scenario. It should be noted that each classifier was trained with features from 

medium contraction force level data and tested with features extracted from all the force 

levels’ data, and the obtained results are presented in Figure 5a-5d. In scenario S1 

(Figure 5a, using data from the sitting scenario for training and testing), the proposed 

invTDD method achieved the highest MCC score of 0.96%, indicating its superiority over 

TD-PSD (0.82%), TD4 (0.77%), NOV (0.83%), TDAR (0.85%), and RMS (0.74%) in the 

context of variation in force levels. Also, in the other three scenarios (Figure 5b, 5c, and 

5d, using data from the non-static scenarios for the training and testing), the invTDD 

method performed significantly better in terms of minimizing the combined effect of 

MoS-MCFV than the previous methods especially in scenarios S2 (Figure 5b) and S4 

(Figure 5d). 

Likewise, analysis based on F1_Score was also conducted and the obtained results 

revealed that the co-existing impact of MoS-MCFV was substantially mitigated by the 

proposed invTDD method with an overall F1_Score of 0.93% which is much higher than 

those of the other methods. Therefore, we could deduce from these results that the invTDD 

method would potentially mitigate the inherent co-existing impact of MoS-MCFV on PR-

based systems compared to the other previous methods in the context of Intra-Scenario 

analysis. To provide more concise evaluation results, the RMS feature was excluded in the 

subsequent analyses because it achieved the least performance amongst the compared 

methods. 
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Figure 5: Intra-scenario analysis results averaged across all subjects and movement classes based on MCC 
metric. Note that the training data was pulled from the medium muscle contraction force level while the test 
data was obtained from all the contraction levels in scenario S1 (a), S2 (b), S3 (c), and S4 (d). 
 
 

3.2 Inter-Scenario analysis 

The co-existing impact of MoS-MCFV on the performance of the PR-based 

movement-intent predictor was further examined with respect to the invTDD and the 

previous methods on Inter-scenario basis (that is, across all scenarios). In this session, 

each classifier was constructed with the training data pulled from a particular contraction 

force level (for instance: 20% MVC) across S1, S2, S3, and S4 scenarios, and the test data 

from the other two contraction force levels (for instance: 50% MVC and 80% MVC) 

across all the scenarios. It should be noted that the above described training and testing 

data were firstly obtained based on invTDD method to form a feature matrix applied to 

characterize the signal patterns for prediction of the limb movement-intents across all the 

recruited subjects. Similarly, the experimental procedure was utilized to construct feature 
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matrix based on TD-PSD, TD4, NOV, and TDAR, that was applied for the prediction of 

limb movement-intents across subjects. The average results obtained across subjects and 

limb movement classes are analyzed using box plots, as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Inter-scenarios analysis results 
averaged across subjects and movement classes. The training data were obtained from a particular 
contraction force level across scenarios and test data from the other two contraction levels across scenario. 
L-MH: Training with data from FL1 and testing with data from FL2+FL3 across all scenarios, M-LH: 
Training with data from FL2 and testing with data from FL1+FL3 across all scenarios, H-ML: Training with 
data from FL3 and testing with data from FL1+FL2 across all scenarios. Note: FL1, FL2, FL3, denotes low, 
medium, and high muscle contraction force levels, respectively. 
  

Based on the bar plot analysis (Figure 6), the PR-based limb movement-intent 

classifier achieved lower CE for the proposed invTDD method compared to the other 

methods for all the three cases. More precisely, for the L-MH case, the average CE of 

invTDD is 15.09% compared with the existing TD-PSD (33.02%), TD4 (31.38%), Nov 

(27.51%) and TDAR (21.57%), RMS (36.10%) showing significant improvement. 

Meanwhile, the invTDD recorded a standard error value of 0.91% which is also 

substantially lower than those of the compared methods, indicating its relatively high level 

of stability across subjects. Moreover, when the PR-based movement intent classifier was 

trained using data from the medium muscle contraction force level across all scenarios and 

tested using concatenation of data from the other two muscle contraction levels across 

scenarios (M-LH), the invTDD method again achieved a much lower CE of 11.60% 

compared to TD-PSD (22.02%), TDAR (18.62%), NOV (24.00%), and TD4 (20.27%) 

features, and RMS (27.11%). The invTDD feature was also observed to have recorded the 
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lowest standard error value of 1.21% compared to the existing feature extraction methods 

even in the presence of the combined impact of MoS-MCFV. Also, the invTDD method 

substantially minimized the co-exiting impact of MoS-MCFV when the classifier was 

trained using data from high contraction force level and tested utilizing data from the other 

two force levels across scenarios (H-ML) as shown in Figure 6. 
 

3.3 Impact of MoS-MCFV on Decoding Individual Limb Movement-Intent 
 

It is worth noting that the above investigations were based on the average limb 

movement intent prediction across subjects and they do not reflect the combined effect of 

MoS-MCFV on the decoding of individual target limb movement. Therefore, examining 

the sensitivity of individual movement to the co-existing impact of MoS-MCFV could 

provide measures for establishing a relationship between the movement and the combined 

factors. Thus, further analysis on the decoding of individual limb movement was carried 

out when the classifiers were trained utilizing data from medium contraction force levels 

across scenarios and validated using data from all muscle contraction levels as shown in 

Table I and II, in which the seven classes of active limb movements were considered. For 

the non-amputee subjects (Table I), the invTDD feature was able to predict the classes of 

movement well when compared with other features, which further demonstrate its ability 

in terms of class separability. Also, regardless of the impact of the MoS-MCFV, the 

proposed invTDD could predict the individual movement classes well. Moreover, the same 

phenomenon was observed with the amputee subjects (Table II), and the proposed 

invTDD feature achieved the highest accuracy for all motion classes except for the HO 

class. Observing Table I and II carefully, it could be seen that the accuracy of the motion 

classes in non-amputee subjects was better than the amputee subjects, thus indicating that 

amputated limb movements are more susceptible to MoS-MCFV. For both category of 

subjects, the WS motion class recorded the lowest prediction accuracy suggesting its 

relatively higher sensitive to the combined influence of MoS- MCFV. Perhaps by 

adopting further training approach, alongside visual feedback scheme, the performance of 

the PR-based movement-intent classifier maybe further enhanced across force levels and 

scenarios. 
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TABLE II: The impact OF MoS-MCFV on Individual Limb Movement Prediction for Amputees Subjects 

No.  invTDD TDAR RMS NOV TD4 TD-PSD 
1 HO 86.90 88.18 66.73 82.04 69.02 58.46 
2 HC 86.80 78.58 70.23 76.49 67.35 79.62 
3 WE 92.63 92.11 69.22 87.10 72.35 72.72 
4 WF 92.48 86.65 65.83 78.78 68.46 71.37 
5 WP 81.78 71.84 60.87 74.58 62.50 80.99 
6 WS 76.29 74.89 60.10 72.60 58.10 62.45 
7 NM 89.16 78.99 63.23 85.94 64.20 71.60 

 

TABLE I: The impact of MoS-MCFV on Individual Limb Movement Prediction for Non-amputee Subjects 
 

No.  invTDD TDAR RMS NOV TD4 TD-PSD 
1 HO 90.18 82.10 74.10 83.53 72.65 78.10 
2 HC 94.98 91.33 80.11 93.23 82.93 84.67 
3 WE 88.39 84.87 71.12 85.49 73.98 81.12 
4 WF 97.63 95.38 69.74 93.69 71.81 86.42 
5 WP 89.61 86.77 81.11 86.67 85.63 81.10 
6 WS 73.65 70.77 63.23 64.87 65.80 69.53 
7 NM 94.60 90.52 89.66 95.56 90.64 72.45 

 

Finally, we present the classification accuracy of the motion classes on scenarios basis, 

when the training set was extracted from a specific scenario (comprising of all the three 

levels of muscle contraction force) and tested with data from all the scenarios (Figure 7). 

The results for both group of subjects are given for the proposed invTDD feature due to its 

overall better performances as demonstrated in the previous sections. As it can be seen 

from Figure 7a, WF recorded the highest accuracy while WS has the lowest accuracy 

across all the scenarios, which is consistent with the results presented in Table I. 

 

 

 

 

 

 

 
 

Figure 7: Scenario-based classification for individual limb movement across subjects. (a) Non-Amputee 
subjects, and (b) Amputee subjects. 
  

S1 S2 S3 S4

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

HO
HO
HC
WE

WE
WF

WP
WS

WF
WP

HC
WE

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

Train-S1 
Test-All 

Train-S2 
Test-All 

Train-S3 
Test-All 

Train-S4 
Test-All 

Train-S1 
Test-All 

Train-S2 
Test-All 

Train-S3 
Test-All 

Train-S4 
Test-All 

b) a) 

                  



26 
 
 
 

 On the average in Figure 7b, WE have better accuracy when compared with the other 

limb movement classes and WS has the least accuracy. It is worth noting that the 

substantial improvement in performance achieved by the proposed invTDD in mitigating 

the combined impact of MoS-MCFV on the individual class of forearm movement intent 

decoding demonstrates its advantage in comparison to the other methods considered in the 

study.  

4.0 Discussion     

 The development of artificial limbs with functionalities and appearances that could 

meet the expectations of the overwhelming majority of upper limb amputees have been a 

key challenge particularly from the functionality point of view [2,5,14]. In this direction, 

concerted efforts have been made across the academia and industry towards practical 

implementation of accurately robust pattern recognition-based control schemes for MDF 

prosthetic devices. Notwithstanding, the clinical applications of the available MDF 

prostheses are limited owing to the fact that they could barely offer fine-motor control 

capabilities that measure up to the level of intuitiveness and dexterity expected by 

majority of the amputees [26, 37]. Importantly, developing MDF prosthetic control 

schemes that would synchronize with the motor intent and smoothly execute the intended 

motor task is necessary to guarantee the clinical and commercial success of the device 

[31-34].  

 Towards developing an accurately robust pattern recognition-based prosthetic control 

scheme that could meet the above requirements, this study systematically investigated the 

adverse impact of two co-existing dynamic factors (MoS and MCFV) on the 

performances of PR-based movement intent classifier in identifying multiple classes of 

targeted upper-limb movements. The study was conducted based on experimental design 

that involved the acquisition of EMG signals associated with multiple classes limb 

movements using three distinct muscle contraction force levels across subjects while in a 

static scenario (siting) and non-static scenarios (walking on level ground, ascending a 

stair, and descending a stair). Additionally, we proposed the invTDD feature extraction 

method to attenuate the co-existence of MoS-MCFV on the PR-based movement intent 

classifier, and further compared its performances with other commonly applied methods 
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on the bases of Intra-Scenario and Inter-Scenario analyses across different evaluation 

metrics. 

 Based on the Intra-Scenario analysis outcomes presented in Figure 4a (for the static 

scenario: S1), it was observed that training a PR-based movement intent classifier with 

dataset from a particular muscle contraction force level (for instance: low) and testing the 

trained model with concatenation of dataset from the other two unseen force levels (for 

instance: medium + high) would generally degrade the performance of the system. 

Interestingly, the proposed invTDD method was able to minimize the error by recording 

substantial decrease in CE ranging between 6.10% ~ 17.04% (at p<0.05) compared to the 

commonly utilized methods (TD-PSD, TD4, NOV, TDAR, and RMS). One possible 

reason why the proposed invTDD achieved significantly better results compared to the 

other methods even in the presence of the unseen force levels, would be because the 

invTDD integrates the ݂݉݀݁݅݅݀݋	݁ݐݑ݈݋ݏܾܽ	݉ݑݏ	݁ݎܽݑݍݏ	(ߛଷ)	  and Coefficient of 

regularization descriptors (ଷߛ)  (represented with equations 7 and 8) that attempts to 

construct similar patterns across muscle contraction force levels when eliciting identical 

limb movements. Notably, when the same experiment was conducted using dataset from 

the non-static scenarios (S2 or S3 or S4), the performances of the PR-based movement 

intent classifiers were found to be much more affected (Figure 4b-4d), thus suggesting 

that the co-existence of both factors (MoS and MCFV) might lead to even more 

degradation in the overall performance of PR-based movement intent decoder than the 

individual factor. Complimentarily, these findings supported our earlier hypothesis which 

stated that: the co-existence of two dynamic factors (MoS-MCFV) might profoundly 

degrade the overall performance of PR-based systems. Additionally, the proposed 

invTDD substantially minimized the combined impact of MoS-MCFV on the performance 

of PR-based movement intent classifier compared to the commonly applied methods 

(Figure 4b-4d). In consolidation with the above observations are the results of the MCC 

(Figure 5) and F1_Score, (0.96% and 0.93%, respectively) that further showed obvious 

advantage of the invTDD in terms of attenuating the combined effect of MoS-MCFV on 

the performance of PR-based system. Subsequently, we found that utilizing dataset from 

the moderate force level (50% MVC) yielded relatively lower CEs for the invTDD and 

the other methods in comparison to dataset from the low (20% MVC) and high (80% 
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MVC) force levels for both the static (Figure 4a) and non-static scenarios (Figure 4b-

4d), which is in line with previous findings [27]. This analysis equally suggest that the 

moderate force level muscle contraction would produce EMG signal patterns that maps 

well into the low and high force levels especially with the proposed invTDD method that 

achieved significantly lower CE  (at p<0.05). This observed phenomenon may provide 

prostheses developers on the need to incorporate such knowledge into the development 

process. 

The Inter-Scenario analysis results obtained when the PR-based classifiers were 

trained using data from a single force (medium) across scenarios and tested with data 

pulled from the other two force levels (low + high) across scenarios, showed that the co-

existence of MoS-MCFV would greatly influence the overall performance of pattern 

recognition. Nevertheless, with the introduction of the invTDD method, such effect was 

substantially minimized compared to the previously proposed methods as shown in 

Figure 6.  Remarkably, we also found that the performance of the invTDD and the other 

features generalized better when the classifier was trained using data from medium 

contraction force levels across scenarios and tested with combination of data from the low 

and high contraction force levels, which is consistent with the results presented in Sections 

3.1.1 and 3.1.2, and also those reported in previous studies [3, 27, 30]. 

Moreover, the combined effect of MoS-MCFV on individual targeted limb movement 

was further investigated to understand how both factors would influence the prediction of 

each limb movement, and to what extent. In this regard, we firstly did the investigation 

using dataset from non-amputee subjects as shown in Tables I, with results indicating 

that the wrist supination and wrist pronation are the most affected limb movements in 

comparison to the other movements.  
     This phenomenon was also observed in Table II that shows the results of individual 

limb movement intent prediction accuracy when dataset from the amputee subjects were 

utilized. Similar trends were observed when various training strategies were examined 

with dataset from both the amputee and non-amputee subjects as shown in Figure 7. One 

possible explanation for these findings might be the difficulty experienced by the subjects 

when they attempted to modulate their forearm muscles towards eliciting the limb 

movements of wrist supination/pronation particularly across force levels and scenarios, 
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which some of the subjects reported during the experimental sessions. Remarkably, by 

applying the proposed invTDD method, the degradation resulting from the co-existing 

impacts of MoS-MCFV on individual limb movement prediction was substantially 

attenuated in comparison to the other commonly applied methods (Tables I and II).  

 Further study based on 2-dimentional principal component analysis (PCA) technique 

[12], revealed that the proposed invTDD feature extraction method would better 

characterize individual targeted limb movement regardless of the co-existing influence of 

MoS-MCFV in comparison to the previous methods (Figure 8). Based on the PCA 

scatter plots, obvious class-separability was observed along the 1st and 2nd principal 

components for each class of targeted limb movement compared to those of TD-PSD, 

TDAR, and NOV methods (which were chosen as representative methods). This obvious 

class separability was especially noticed for the wrist supination (WS) and wrist 

pronation (WP) movements (Figures 8a) which again corroborate our earlier discussed 

results (Figure 7) with the exception of the last two training instances for the amputees’ 

populations.  
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Figure 8: PCA-based feature space analysis for each class of targeted limb movement across subjects for 
the proposed invTDD method (a), TD-PSD method (b), TDAR method (c), and NOV method (d). 
 
We believe that such high-class separability recorded by the invTDD method across all 

the targeted limb movement classes further suggest that it might potentially aid the 

realization of a reliable PR-based control scheme even in the presence of multiple 

dynamic factors such as MoS and MCFV.   

5.0 Conclusion and Future work      

In summary, the dynamic co-exiting impact of MoS-MCFV on the performance of 

PR-based movement classifier (a rarely studied issue) was systematically investigated. 

Afterwards, the invTDD feature extraction method was proposed to optimally 

characterize multi-class EMG signals patterns that were subjected to both factors MoS 

and MCFV), and the invTDD method’s performance was examined in comparison to 

other frequently adopted methods based on two different strategies (Intra-Scenario and 

Inter-Scenario analyses). Extensive analyses of the experimental results showed that the 

co-existence of MoS-MCFV would meaningfully degrade the overall performance of PR-

based limb movement-intent classifier. In comparison with the other methods considered 

in the study, the proposed invTDD method significantly minimized degradations resulting 

from the adverse effect of MoS-MCFV on the PR movement-intent classifier, thus 

achieving substantial reduction in CE on both the Intra and Inter-scenario analyses. 

Furthermore, we demonstrated that the proposed invTDD method exhibits more stable 

characteristics than the other existing methods across subjects and limb movements even 

in the presence of both MoS and MCFV. Also, experimental results showed that the 

combined effect of MCFV-MoS would degrade the limb movement intent decoding 

accuracy of amputee and non-amputee subjects, but such effect was found to be more 

pronounced in the amputee subjects. Therefore, it is believed that the outcomes of this 

study would provide prosthetic developers with understanding on how to efficiently 

improve the clinical robustness of the state-of-the-art myoelectric control systems, 

especially against the co-existing effect of MoS and MCFV. Also, findings from the study 

are not only applicable to the upper-limb prosthetic system but may equally spur potential 

developments in other related areas such as intelligently driven electric wheelchairs [49], 
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human-computer interaction systems [50], and other applications that also adopt 

myoelectric pattern recognition control schemes.   

It should be noted that although this study investigated a crucial issue, the co-existing 

impact of MoS-MCFV on the performance of PR-based movement intent classifier, and 

proposed the invTDD method to resolve the issue, there are still some limitation to be 

addressed. In the future, we hope to further examine the accuracy and robustness of the 

proposed invTDD framework in terms of its capability to resolve other pertinent issues 

affecting the performance of myoelectric pattern recognition system, especially in the 

context of highly dexterous forearm/fine finger movements that would normally require 

complex neuromuscular coordination. Furthermore, we hope to consider online processing 

of the myoelectric data via cloud-based platform [51], towards studying the proposed 

invTDD feature set’s performances with respect to the co-existing impacts of MoS-

MCFV.   
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