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Abstract 

 

This study focused on the prediction of rainfall in different climatic zones in South Africa using 

four machine learning models. The models used in this study are the linear regression, random 

forest, support vector machine, and the ridge and lasso regression. South Africa was divided 

into nine using the Koppen-Geiger climate classification system and three cities were selected 

for each climatic zone. Atmospheric datasets from the South African Weather Service from 

1991 to 2023 and the National Aeronautics and Space Agency from 1983 to 2023 were used 

for this study. These datasets were trained and tested using the four models. The monthly 

rainfall predictions obtained after training and testing are then compared with the actual 

datasets to validate the accuracy of the models. Evaluation metrics such as mean average error, 

mean square error, root mean square error, correlation coefficient, and coefficient of 

determination were used to access the accuracy of each model. The best model for almost all 

climatic zones were the support vector machine and by random forest. Linear regression and 

ridge and lasso regression also performed well in various regions. It was however difficult to 

accurately predict rainfall under the warm and dry summer. This was attributed to the 

unpredictable atmospheric variability in this region. Also, in regions where there is little 

rainfall, the models performed worse compared to climatic zones with rainfall above 5mm. 

This study also showed that for better predictive performance, atmospheric parameters such as 

dew point, cloud cover, and water vapour are the most essential. Using the random forest 

model, monthly rainfall for 2024 was predicted and compared with 2022 and 2023 rainfall.  
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Chapter 1 

 

1.0 Introduction 

 

The impact of weather and climate on daily activities can not be over emphasized. Different 

human activities and programs such as environmental, economic, social, and political often 

rely on accurate weather predictions. These predictions are done using hydrological numerical 

models (Ghazikhani, 2022). These models are based on physical laws such as momentum, 

energy, conservation of mass. Using numerical models, the important physical processes taking 

place at all levels (atmosphere, ground-level, and soil) are described with their impact on 

variables such as wind, water vapour, temperature, precipitation, clouds, and pressure. 

However, these models are quite complex and depend highly on correct information, equations 

and many super computers which makes the process challenging. With the increase in the 

amount of data on daily basis, numerical models will only get more complex in predicting 

accurately weather and climate parameters, while also increasing the probability of errors 

(Jeong & Yi, 2023). To eliminate these model errors, post-processing is done (Lucatero et al., 

2018). However, since most quantities to be measured have limited time scales, it reduces the 

effectiveness of the elimination of errors (Sexton et al., 2019). This leads to the need of machine 

learning (ML) models and algorithms for weather prediction. 

The advent of the 21st century brought about increase in big data, supercomputers with high 

computational power. This led to the era of machine learning and artificial intelligence with 

one of its applications being weather forecasting. Machine learning models in weather forecast 

in time past have been limited in its application due to computational architecture and power 

constraints. However, in recent times, these constraints have been overcome with the use of the 

graphic processing unit (which is faster) and increased computer memory which makes 
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calculations efficient. These new computational methods can be described as big data, machine 

learning or artificial intelligence. (Huntingford et al., 2019). 

Many researchers have written about the importance and significance of machine learning 

algorithms for various applications. When labelled datasets are available, they can be used as 

training datasets which can be used to build models that can be tested and evaluated. If the 

result of the model is satisfactory, such models can be used for any type of classification and 

regression. These models are called supervised learning. Under supervised learnings, we have 

models such as Support Vector Machines (SVM), Random Forest (RF), Logistic Regression, 

K-Nearest Neighbor (KNN), Neural Networks (NN), XGBoost (XGB), Linear Regression 

Models (LRM), Generalized Linear Models (GLM) among others. There is another group of 

machine learning algorithms that do not need the datasets to be labelled for prediction. This is 

known as unsupervised learning. Examples include Principal Component Analysis (PCA), K-

means, Hierarchical Clustering (Bochenek & Ustrnul, 2022). These applications have brought 

improvement to transport systems, healthcare, security, and defence networks, and in every 

area of life. The availability of these datasets and supercomputers with high computational 

power and speed have made prediction accuracy better and faster with reduced level of 

uncertainty (Huntingford et al., 2019). 

In recent times, researchers have suggested the use of machine learning algorithms for weather 

prediction. Bochenek and Ustrnul (2022) reviewed about 500 publications from 2018 to 

determine the future of weather and climate prediction and concluded that machine learning 

models are the future of weather forecasting. Wang et al (2019) also suggested the use of 

machine learning algorithms for weather prediction due to unsatisfactory performance while 

using the numerical weather prediction. Hewage et al (2021) pointed to the high computational 

power and complex mathematical equations to solve as reasons to change from numerical 

weather prediction to machine learning models. Their results showed that though machine 
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learning models were ‘lightweight data-drive’, they performed better than the numerical 

models. 

In south Africa, numerical weather model is still being used for prediction (Landman et al., 

2012; Sumbiri & Afullo, 2021). South African Weather Service uses the unified model of the 

United Kingdom Met Office which is also used among the southern African countries (Bopape 

et al., 2021). The forecasts are made using the South African Weather Service Cray XC30 

which is a high performing computing system. Using a grid spacing of 4.4km, the united model 

can forecast up to 3 days. If the grid spacing is expanded to 16km, forecast can be made up to 

10 days (Bopape et al., 2021). This shows the limitation of numerical method for rainfall and 

weather prediction as it cannot predict beyond 10 days at most. With the success of machine 

learning models in rainfall prediction across the world, this work seeks to explore different 

models for a long-term (1-year) forecast. 

Despite South Africa being bounded by the Atlantic and Indian Ocean, South Africa is 

susceptible to drought (Muyambo et al., 2017). Extreme droughts which last for years are 

mostly caused by El Nino Southern Oscillation (ENSO) which is a quasi-periodic invasion of 

war sea surface waters into Pacific Ocean. South Africa experienced drought in 2015 and 2016 

which was attributed to a strong El Nino event (Baudoin et al., 2017). This resulted in reduction 

in agricultural productivity which led to importing of grains instead of exports, water shortages 

and significant negative impact on the economy. This drought was termed the worst in 23 years 

after the drought of 1992 to 1995. Drought leads to reduction in crop yields and animal 

productivity, and it is expected that the frequency, intensity, and duration of droughts will 

increase due to climate change and anthropogenic activities thereby affecting livelihood (Mare 

et al., 2018). In 2015, the economic damage attributed to drought in Africa was estimated to be 

about US $2.4 billion and US$ 354 million in the Southern African region affecting about 3.2 

million people. In South Africa, the damage was about US $250 million with 2.7 million people 
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affected, resulting in 8.4% reduction in agricultural production and 15% reduction in livestock. 

Accurate prediction of rainfall might have reduced the advance effect caused by the drought as 

farmers and government would be better prepared instead of the government spending almost 

a billion rand on relief and support for farmers. However, due to global warming and climate 

change, it is becoming increasingly difficult to accurately predict rainfall as it depends on 

several physical factors of the hydrological cycle.  

1.1 Problem Statement 

 

Most research carried out on weather forecasting especially rainfall prediction has been carried 

out outside Africa. Most weather stations in Africa still rely on numerical and statistical 

methods for their forecast (Meque et al., 2021; Milton et al., 2017). These methods are time 

consuming and very expensive (Chen et al., 2022). Recent research in Africa has shown the 

potential for machine learning applications. Bamisile et al (2020) used machine and deep 

learning models for solar radiation comparison. These models were applied to four northern 

states (Borno, Kano, Yobe, Zamfara) in Nigeria using an hourly time step 12 years datasets. 

Their result revealed a coefficient of determination value of 0.89 when using the support vector 

regression and 0.95 while using the recurrent neural network. 

Bouras et al (2021) used four ML algorithms (MLR, SVM, RF, and XGB) to forecast crop yield 

(cereal). Their results showed the effectiveness of applying machine learning models for cereal 

yield prediction. Their models showed that they can accurately predict crop yield with an R2 

of 0.88. Cedric et al (2022) used different ML models were also used to predict crop yield 

production in six West African countries. Their result revealed coefficients of determination of 

95.3%, 93.15%, and 89.78% for decision tree, K-Nearest Neighbor, and logistic regression 

respectively. Machine learning algorithms have also been used in Sub-Saharan Africa to predict 
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malaria occurrence using climate variability (Nkiruka, 2021). They stated that the result of their 

research will aid decision making as well as adequate preparation in future outbreaks. 

Researchers have shown the possibility of using machine learning models for weather 

prediction across the world. They have also shown that it is faster, more accurate, does not need 

high computational power, and most importantly, it is the future of weather prediction. This 

work therefore seeks to explore the use of machine learning models for rainfall prediction in 

South Africa since it still makes use of numerical weather prediction. 

1.2 Research Questions 

 

This research work aims to answer the following questions: 

i. Which machine learning algorithm can best predict daily rainfall in different South 

African climatic zones using historical datasets? 

ii. Using various evaluation metrics, which model is best suitable for rainfall in each 

climatic zone? 

iii. Based on the best models using evaluation metrics, can rainfall pattern for the different 

climatic zones be predicted? 

iv. Using the best model, can 2024 rainfall be predicted? 

1.3 Research Objectives 

 

The objectives of this research are to 

i. compare how different machine learning models predict daily rainfall over various 

South African climatic zones. 

ii. use different evaluation metrics to determine the best model for rainfall prediction for 

the different climatic zones. 
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iii. compare how the different models predict rainfall for different climatic zones in South 

Africa. 

iv. use the best model to predict 2024 rainfall. 

1.4 Study Locations 

 

The study location is based on the Koppen-Gieger climate classification of South Africa. South 

Africa is broadly classified into three: Arid, subtropical wet (fully humid and dry winter) and 

subtropical dry (hot summer). This study also considered the sub-group climate classification 

such as the cold and semi-arid steppe, cold arid desert, hoot and semi-arid steppe, and the hot 

arid desert under the arid classification. The subtropical highland with dry winter and the humid 

subtropical with dry winter are considered under the subtropical wet. For subtropical dry, warm 

and dry summer, temperate oceanic without dry season, humid subtropical without dry season 

are the sub-divisions. For each sub-division, three locations are randomly selected for rainfall 

prediction. Table 1 shows the subdivisions, locations selected for the study as well as their 

average annual temperature and rainfall. Figure 1 shows the Koppen-Geiger climate 

classification for South Africa as well as the study locations. 

Table 1: Table showing the Koppen-Geiger climate classification of South Africa the sub-

divisions, study locations, annual average temperature, and annual average rainfall. 

Climate 

Classification 

Sub-division Location Average Temperature (oC) Annual 

Rainfall 

(mm) 

Summer 

(January) 

Winter 

(July) 

Max Min Max Min 

Arid Cold and semi-arid 

steppe 

Bloemfontein 29 15 15 -2 469 

Springfontein 29 16 14 3 287 

Welkom 32 17 20 2 577 
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Cold arid desert Alexander Bay 25 16 23 9 50 

Beautfort West 33 16 19 6 392 

Bristown 31 20 15 5 168 

Hot and semi-arid 

steppe 

Kimberly 33 18 19 3 350 

Mahikeng 31 17 22 4 571 

Port Elizabeth 25 18 20 9 563 

Hot arid desert Lauville 21 13 16 10 301 

Musina 34 21 25 7 372 

Upington 36 20 21 4 219 

Subtropical wet Humid subtropical 

with dry winter 

Dundee 26 16 19 5 684 

Louis Trichardt 30 12 22 3 540 

Nelspruit 29 19 23 6 934 

Subtropical 

highland with dry 

winter 

Harrismith 26 14 19 2 973 

Johannesburg 26 15 17 4 543 

Newcastle 30 17 22 4 895 

Subtropical dry Humid subtropical 

without dry season 

Durban 28 21 23 11 828 

Port Edward 27 21 22 13 1044 

Richards Bay 29 21 23 12 1228 

Temperate oceanic 

without dry season 

East London 26 18 19 10 732 

George 25 15 15 7 657 

Mthatha 27 16 21 4 1044 

Warm and dry 

summer 

Bredasdorp 25 18 18 11 463 

Cape Town 26 16 16 7 475 

Clanvilliam 32 17 18 6 420 
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Figure 1: Koppen-Geiger South Africa weather classification showing the various climates. 

1.5 Significance of the Study 

 

The results of accurate rainfall prediction can be applied to various aspects and sectors such as 

water management planning, mitigating natural disaster and early warning system, water 

allocation for agricultural purposes, water storage in dams for hydroelectricity, monitoring of 

droughts, inflow, and outflow of water in dams and reservoirs among others. With adequate 

information on the amount of water in a region, it will be difficult to maximise water usage. 

It is therefore expected that this work will reveal the potential of machine learning algorithms 

for weather prediction in South Africa. It will also show which model is best suited for the 

various provinces. This work is expected to build a foundation for exploring machine learning 

models for weather prediction in Southern Africa. 

In addition, since 60% of sub-Saharan Africa is susceptible to drought, and 2015 drought in 

South Africa cost farmers about R250 million in losses, this work will help farmers in 

identification of sowing dates and government agencies to prepare for drought if predicted. 
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1.6 Research justification 

 

The use of machine learning models in rainfall prediction have increased across the world due 

to its advantages. The atmospheric variables affecting rainfall are complex and nonlinear. 

Rainfall prediction requires the use of variables such as dew point, relative humidity, 

windspeed, temperature, atmospheric pressure, water vapour among others. With an ever-

growing database, machine learning models can easily reveal patterns and relationships 

between the variables using historical datasets. These models can handle the complexities in 

the datasets better than the numerical method of rainfall prediction. In addition, multiple 

models can be combined to improve the accuracy of the forecast. With evolving weather 

conditions due to climate change, machine learning models can be designed to continuously 

learn and adapt to this change. Since the main aim is to improve forecasting accuracy, the use 

of machine learning models will enhance both precision and reliability of prediction which has 

resultant effects on the economy, agriculture, disaster, and water resource management. 

However, in South Africa, no work has been done using machine learning models to predict 

rainfall. Predictions have been done using numerical methods. This work therefore aims to 

explore the possibility of using machine learning models to predict rainfall since it has been 

tested in other continents and found accurate. 

1.7 Scope of the study 

 

Despite the advantages of machine learning models in rainfall prediction, the models depended 

on the availability and reliability of the datasets used. In some climatic zones, it was difficult 

to get datasets for all the atmospheric variables needed for rainfall prediction. Also, three cities 

were selected in each climatic zones to examine the best model for rainfall prediction. These 

cities only represent a fraction of the whole climatic zone and can only give indications on the 
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best models. Therefore, though this work suggests models to be used in different climatic 

zones, some models may perform better in cities that were not examined. 

This work was carried out using four machine learning models. Although these models were 

selected based on their accuracy from research conducted in other countries and continents, 

there is the possibility that other models may perform better than the four models used. 

 

1.8 Contribution to Knowledge 

 

Machine learning models for rainfall prediction has been applied in different parts of the world 

and has shown to be more reliable and accurate compared to the traditional numerical method 

of weather forecasting. A significant contribution of this work to knowledge is the prediction 

of 2024 rainfall across 27 locations in South Africa using machine learning models. This 

research also assessed the performance of 4 machine learning models over different climatic 

zones in South Africa. This research forms a basis upon which other researcher can be carried 

out. It shows the potential to enhance prediction accuracy that will benefit different areas of 

the economy if properly applied. This work also gives a background to local forecast in 27 

cities in South Africa under the nine climatic zones, three cities per climatic zones. This 

therefore gives an idea into what is happening in these zones. This work also helps researchers 

identify the key components for rainfall prediction in the different climatic zones which will 

help them refine selection of input features to improve the performance of the models. 

 

1.9 Conclusion of the chapter 

 

This chapter presents a background to the study, the importance of accuracy in rainfall 

prediction and its implications for the economy, agriculture, and infrastructure. It shows the 

ways in which rainfall is being predicted in South Africa, its limitations, and the need to explore 
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the use of machine learning models. The objectives of this study and questions this research 

work aims to carry out are stated as well as the justification, limitation, and contribution to 

knowledge of this work.  

In the next chapter, literatures are reviewed on the state-of-the-art machine learning models for 

rainfall prediction on a global and local stage. The evaluation metrics for these models and the 

gap in research will be discussed. 
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Chapter 2 

 

2.0 Literature Review 

 

2.1 State-of-the-art of Machine Learning Models for Rainfall Prediction over various 

Climatic Regions globally 

 

Due to the computational cost and time-consuming nature of numerical weather models, 

researchers have explored alternative ways of forecasting weather on a large scale using various 

machine learning algorithms and have found them accurate. Ridwan et al (2020) used four 

machine learning methods for rainfall forecasting in Terengganu Malaysia. They used datasets 

from 10 stations around Terengganu for the study using autocorrelation function and projected 

error based on historical rainfall data. Their result revealed that Boosted decision tree 

regression had the best coefficient of determination compared to decision tree forest, neural 

network regression, and Bayesian linear regression. He et al (2021) examined the use of 

machine learning algorithms for sub-seasonal climate forecasting. They focused on predicting 

temperature and rainfall on two-week to two-month time scale. They used two non-deep 

learning (DL) models (AutoKNN, MultiLLR) and five machine learning models (Multitask 

Lasso, Gradient boosted trees (XGBoost), State of the art baselines, Encoder (LSTM)-Decoder 

(FNN) and CNN-LSTM models) for their research. Their results showed that machine learning 

models captured the predictability on sub-seasonal time scales with the ability to outperform 

the baselines set while with the best designed models for deep learning, machine learning 

model results were better. 

Due to various catastrophic events in South America attributed to with weather and climate, 

Anochi et al (2021) deployed the use of ML algorithms for weather forecasting modelling in 

South America. They observed that using numerical methods for precipitation prediction could 

not accurately show precipitation patterns due to the absence of datasets specific for the 
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regions. Their work showed the possibility of using machine learning algorithms for accurate 

precipitation prediction. They trained their models using 36-year datasets from 1980 to predict 

2018 and 2019 rainfall. However, they observed large errors in summer months during the 

rainy season. This was attributed to local processes in the region that the algorithms could not 

learn as well as high energy during that period. They then showed that for all seasons except 

spring, training the networks with Tensor flow will make it perform better compared to those 

trained with neural networks.  

Diez-Sierra and del Jesus (2020) investigated how 8 statistical and machine learning models 

performed while predicting daily precipitation in a semi-arid region. They used a 36-year 

rainfall data divided into training and test datasets using the 80-20 principle. The methods the 

used include the LRM, GLM, LR, RF, K-NN, SVM, K-means, and NN. They stated two 

advantages of machine learning methods over others to be that they do not need a known priori, 

neither do they need to make assumption on the distribution errors. Their result showed that 

the hyperparameter chosen affects the machine learning model. They further stated that if 

wrong parameters are used, it will affect the predictive capability and overfitting of the training 

models. They suggested that the hyperparameters should take higher values to avoid 

overfitting. The summary of their results showed that NN performed better than other models 

while predicting the intensity of rainfall. This was closely followed by SVM, K-NN and RF 

while the worst of their models was WT.  

As a result of the successes of ML approaches in weather forecast in South America, Monego 

et al (2022) also applied these models to precipitation prediction using Gradient-Boosting 

(GB). They used the extreme gradient boosting (XGB) and TensorFlow (TF) models to train 

datasets from January 1980 to February 2020 using 75-25 principle. They considered 

meteorological variables such as air temperature at the surface and at 850 hPa, surface pressure, 

specific humidity at 850 hPa, zonal wind component at 500 hPa and at 850 hPa, meridional 



14 
 

wind component at 850 hPa, as well as rainfall. Their result showed excellent performance with 

regards to pattern recognition for precipitation. They also showed that XGB performed better 

than TensorFlow deep neural network for all seasons except autumn while TensorFlow 

performed better than XGB only in autumn. 

Baran et al (2020) compared machine learning models with parametric classification 

techniques using datasets from 2002 to 2014. Their result showed that when average rainfall is 

used as additional covariate, multilayer perceptron performed best. They also used these 

models to predict cloud clover. They stated systematic errors in calibration when several 

probabilistic classification methods are used. For their work, POLR had the best performance 

for two days, however, for long-term forecast, MLP performed best. They stated that the 

inclusion of atmospheric parameters such as pressure, humidity, temperature can improve the 

predictive performance of any model. 

Bamisile et al (2020) compared the results of global and diffuse solar radiation using machine 

and deep learning models. For deep learning models, they used the artificial neural network 

(ANN), convolutional neural network (CNN), and the recurrent neural network (RNN) while 

for machine learning algorithms, they selected the SVM, polynomial regression (PR), and the 

RF. These models were applied to four northern states (Borno, Kano, Yobe, Zamfara) in Nigeria 

using an hourly time step 12 years datasets. They stated that the time spent in training the 

machine learning models reduced compared to the time spent in the training of deep learning 

models, however, from their results, the deep learning models performed better. 

Appiah-Badu et al (2021) predicted precipitation using five ML models (Decision Tree, K-

Nearest Neighbour, Multilayer Perceptron, Extreme Gradient Boosting, and Random Forest) 

in Ghana using 41-year climatic datasets from 2018. They divided the datasets into training 

and test sets using three different ratios (70:30, 80:20; 90:10) to assess the performance of the 
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models. They analysed four climatic zones in Ghana: Coastal zone, Forest zone, Transitional 

zone, and Savanah zone. Their result showed that over the coastal zone of Ghana, MLP 

performed best using the 90:10 principle while XGB performed best using 80:20. For the three 

different ratios in the coastal zone of Ghana, KNN performed worst. Similarly, for the forest 

zone, at 90:10, MLP performed better than other models with KNN performing worst. Using 

70:30, DT, RF, and XGB all had better precision, recall and f1 score. Over the transitional 

zones, all three ratios of RF and XGB performed best in the metrics used. The result also 

showed that MLP performed best using the 90:10 ratio, perhaps the best ratio to be used while 

considering multilayer perceptron. Finally, over the Savannah zone, RF and XGB also showed 

the best performance in 90:10, 80:20, and 70:30 both with rain and without rain. The reason 

for KNN performing worst in all zones was not investigated in the study. However, their study 

showed that machine learning models are good for rainfall prediction especially RF, XGB, and 

MLP. 

In various parts of the world, machine learning algorithms have been applied for rainfall 

prediction. In India, Jose et al (2022) used various machine learning models to predict daily 

rainfall. Their result showed that long short-term memory performed best with a coefficient of 

determination of 0.9. In Australia, noted for the highest extreme temperature in the world, 

Polishchuk et al (2021) used random forest model to predict rainfall to know when there will 

be wildfire. Their results revealed an accuracy of 85.9% in their training model and 84.7% 

accuracy in the prediction of rainfall. Similarly, Raval et al (2021) used different machine 

learning models to predict rainfall using 10 years datasets. Their result revealed that logistic 

regression model had the highest classification with and f1 and precision of 86.9% and 97.1% 

respectively. Other researchers such as He et al (2022), Islam et al (2023), Sachindra et al 

(2018) among others have all used machine learning models to predict rainfall in Australia with 

accuracy above 80%. In South America, Ferreira and Reboita (2022) showed that the 
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application of machine learning models in rainfall prediction has led to 75% error reduction in 

rainfall estimates. Their result also indicated the ability of their models to reproduce both the 

spatial and temporal variation for dry and wet seasons across south America. Despite high 

topographic gradients and unstable climatic conditions in south America, researchers have 

shown the possibility of deploring machine learning models for rainfall prediction with high 

degree of accuracy (Anochi et al., 2021; Gómez et al., 2023).  

Based on the successful application of machine learning algorithms in different parts of the 

world, this research work seeks to explore its application for daily rainfall prediction in South 

Africa. The results from the literatures reviewed have shown the accuracy of machine learning 

models as well as their better performance compared with numerical weather forecasts. They 

have also indicated the various machine learning models for various climates and the possibility 

for improvements in their forecast. It is however important to note that for different regions, 

some machine learning models will be more appropriate. With this research work predicting 

rainfall in different climates across South Africa, it will give better indication on which machine 

learning model is appropriate for a climatic condition.  

Table 1 shows different machine learning models that have been applied to rainfall prediction 

across the world and their correlation coefficient to prediction. Mekanik et al (2013) used both 

linear regression models and artificial neural networks for long-term rainfall forecasting in 

Australia. Their result showed poor generalization and forecasting ability in the east compared 

to other areas, with a correlation coefficient 0f 0.06 to 0.69 obtained. Also, Australia, a southern 

midlatitude country like South Africa Hossain et al (2020), used linear and nonlinear models 

for long-term seasonal rainfall forecasting. They used multiple linear regression for linear 

forecasting, while the artificial neural network was used for nonlinear regression. They applied 

the models to three stations and evaluated them using the typical statistical parameters. They 

obtained a correlation coefficient ranging from 0.35 to 0.83 for the linear regression models, 
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while the artificial neural network performed much better with a correlation coefficient ranging 

from 0.76 to 0.90. Their mean square and absolute percentage error values also showed that 

nonlinear models performed better than linear models for their study. However, neither model 

was able to estimate the extreme spring rainfall accurately. 

Similarly, Peter and Precious (2018) used multiple linear regression and artificial neural 

networks for seasonal rainfall prediction in Nigeria, west Africa using data from 1986 to 2017. 

They obtained a correlation coefficient of 0.66 for the linear regression model and 0.93 for the 

artificial neural network, showing that it performed better for predicting seasonal rainfall. In 

India, Swain et al (2017) also used a linear regression model for precipitation forecasting and 

obtained a correlation coefficient of 0.96 and a coefficient of determination of 0.97.  

Support vector machine and multilayer perceptron were used in Zhang et al (2020) to predict 

annual and non-monsoon rainfall in India using relative humidity and annual rainfall data from 

1991 to 2015. They obtained a correlation coefficient ranging from 0.59 in April to 0.80 in 

October, giving a yearly average of 0.71 for the support vector machine model. They suggested 

the combination of both models for better prediction accuracy. Pham et al (2020) developed 

advanced artificial intelligence models for daily rainfall prediction in Vietnam. They used 

relative humidity, wind speed, temperature, and solar radiation as the atmospheric parameters 

and rainfall as the output. Their result revealed that SVM best-predicted rainfall with a 

correlation coefficient of 0.85. This is like the value we obtained using the support vector 

machine. Other evaluation metrics, such as the mean absolute error, skill score, probability of 

detection, false alarm ratio, and critical success index, proved that the SVM performed better 

than other models. In Taiwan Yen et al (2019) obtained a correlation coefficient of 0.49 using 

the SVM, while Kisi and Cimen (2012) obtained a correlation coefficient 0.78 in Turkey. 
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The complete empirical ensemble mode decomposition hybridized with random forest and 

kernel ridge regression model for monthly rainfall forecast in Pakistan was investigated in Ali 

et al (2020). They obtained a correlation coefficient of 0.74-0.99. They proposed a hybrid of 

random forest and kernel ridge regression for higher accuracy. In Iran, Lotfirad et al (2022) 

also used random forests to monitor and predict drought in various climates. They obtained a 

correlation coefficient ranging from 0.81 to 0.95 depending on the climatic region. Both values 

are also within the values obtained in this study when a random forest was used to predict 

rainfall. Zhang et al (2021) obtained a correlation coefficient of 0.71 in China, while Orellana-

Alvear et al (2019) got a value of 0.83 in Ecuador while using the random forest to predict 

rainfall, similar to that obtained in this work. 

Sajan and Kumar (2021) examined the forecasting and analysis of train delays and impact of 

weather using different machine learning models with the available historical data in India. 

Their result showed that lasso had a correlation coefficient of 0.82 while that of the support 

vector machine was 0.79. Still in India, Tiwari and Singh studied rainfall in Indian states and 

their predictive analysis using machine learning models. Their objective was to improve 

harvest of crops which highly depended on the pattern of rainfall the country receives 

especially the monsoon. Their result showed application of lasso for this purpose as they 

obtained a correlation coefficient of 0.65 when they compared their result with historical 

datasets from 1901 to 2017. Sungkawa and Rahuyu (2019) predicted extreme rainfall using the 

Bayesian Quantile regression in statistical downscaling modelling in Indonesia. This was the 

first study in Indonesia using the adaptive lasso in their modelling. For moderate rainfall, they 

obtained a correlation coefficient of 0.75 which increased to 0.90 during high extreme rainfall. 

This points to the possibility of the model performing better in regions with high amount of 

rainfall compared to regions that experience intermittent drought. 
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Table 2: Table showing the correlation coefficients from selected previous studies for linear 

regression, random forest, support vector machine, and the ridge and lasso regression models. 

 Models (Correlation Coefficient)  

LR RF SVM Ridge & 

Lasso 

This Study 0.85 0.812 0.849 - 

Mekanik et al (2013) 0.06-0.69 - - - 

Hossain et al (2020) 0.35-0.83 - - - 

Peter and Precious (2018) 0.66 - - - 

Swain et al (2017) 0.96 - - - 

Zhang et al. (2020) - - 0.71 - 

Pham et al. (2020) - - 0.85 - 

Yen et al (2019) - - 0.49 - 

Kisi and Cimen (2012) - - 0.78 - 

Ali et al (2020) - 0.74-0.99 - - 

Lotfirad et al (2022) - 0.81-0.95 - - 

Zhang et al. (2021) - 0.71 - - 

Orellana-Alvear et al (2019) - 0.69 - - 

Tiwari and Singh (2020) - - - 0.65 

Sungkawa (2019) - - - 0.90 

Zaikarina et al (2016) - - - 0.75-0.90 

Sajan and Kumar (2021) - - 0.79 0.82 

He et al (2019) - - - 0.66 
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2.2 Research gap 

 

From the literatures reviewed, it is evident that most research carried out on rainfall prediction 

using machine learning models have been done in either Asia, North America, South America, 

and Europe. Researched carried out in Africa using machine learning models have been to 

evaluate wheat yield, global irradiance with no identifiable literature exploring the potential 

use of machine learning models for rainfall prediction. This research work therefore seeks to 

explore the potential use of machine learning models for rainfall prediction beginning in South 

Africa by examining it under the different climatic zones. 

 

2.3 Machine Learning Models for Rainfall Prediction over various Climatic Regions of 

South Africa 

 

This study explored the use of four machine learning models over the different climatic zones 

of South Africa. 

2.3.1 Linear Regression 

 

Regression analysis is a statistical tool for estimating the value of a dependent variable from 

an independent variable (Su et al., 2012). When two variables have a linear relationship, linear 

regression is used. Multiple linear regression is used when two or more independent variables 

have a linear relationship, while polynomial regression is used when the variables have a 

polynomial relationship (Maulud & Abdulazeez, 2020). Linear regression is one of the most 

common statistical techniques used in modelling for observational studies (Kumari & Yadav, 

2018). It provides satisfactory approximation in modelling for small sample-size datasets. 

Maulud and Abdulazeez (2020) presented the theoretical background for linear regression. The 

first is a regression commonly used for forecasting, predicting, and determining the relationship 

between variables. Next is the regression model, where the independent variables predict the 
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dependent variable, which can be a simple, multivariate polynomial regression. The least-

square error in linear regression ensures that the predicted values approach the minimum of all 

possible regression coefficients. Kumari and Yadav (2018) gave five reasons for using linear 

regression. Linear regression is used for descriptive studies as they help to analyse the strength 

of relationships between outcomes and predictors. They are also used to adjust the effects of 

covariates and to estimate the important factors affecting the dependent variables. They added 

that it helps analyse the extent of prediction and quantify new predictions. 

Linear Regression Algorithm 

Linear regression provides a linear relationship between an independent variable (x-axis) and 

dependent variable (y-axis) to predict future events. It is used to show relationships between 

continuous variables. It therefore shows how the dependent variable changes with respect to 

the independent variable. A simple linear regression is shown in figure (2). Mathematically, it 

is represented as 

y = a0 +  a1x + ε 

Equation 1: Mathematical representation of linear regression 

 

Where y is the dependent variable or the target variable, 

x is the independent variable or the predictor variable, 

a0 is the line intercept, 

a1 is the linear regression coefficient, and  

ε is the random error. 
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Figure 2. 1: Simple linear regression. 

 

2.3.2 Random Forest 

 

Random Forest was proposed by Leo Breiman in 2001 and is mainly used for classification 

and regression problems (Biau & Scornet, 2016). It is mostly used when there are more 

variables compared to observations. An ensemble method uses several decision trees and 

averages their aggregate predictions. It can rank variables based on their relevance and ability 

to discriminate target classes (Belgiu & Dragut, 2016). In Breiman’s approach, each decision 

tree is formed by randomly selecting variables at each node. These variables are then split, after 

which the best split is calculated based on the features in the training set. This decision tree is 

then developed by maximizing the size without pruning, known as the Classification and 

Regression Trees (CART) methodology (Biau, 2012). Details on the theoretical framework for 

random forest can be found in (Breiman, 2001). Despite the growing interest in random forest 

and its accuracy, the mathematical forces behind it are not well known, nor are its statistical 
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properties (Biau, 2012). Recent works have still not been able to explain the behaviour of 

random forests, only that they are accurate (Biau & Scornet, 2016). 

Random Forest Algorithm 

Random forest is a widely used machine learning model that combines the result of multiple 

decision trees to obtain a single result. Although decision trees are prone to bias and overfitting, 

however, random forest can predict more accurately since it uses multiple decision trees. 

Random forest algorithm can handle datasets containing both continuous variables (regression) 

and categorical variables (classification). Random forest is an ensemble learning technique 

since it makes use of multiple models. ensemble can either be bagging or boosting, however, 

random forest makes use of the bagging method. Steps involved in bagging: 

Subset selection: A random sample is chosen from the datasets. 

Bootstrap sampling: From the random samples, each model called bootstrap sample is created. 

Independent model training: Each model is then trained independently on its corresponding 

bootstrap sample. 

Majority voting: The results of all models are combined to determine the final output through 

majority voting. Through majority voting, the most predicted result is then selected. 

Summarily, in the random forest algorithm, random samples and random features are selected 

from the datasets and individual decision trees are created from each sample. Each decision 

tree then generates an output which is aggregated, and the most predicted result is selected. 

For example, figure (3) shows how random forest works. There is a fruit basket from which 

samples are taken to construct individual decision trees. Each decision generates an output of 

apple, apple, and banana. Since apple is the most common decision, the final output is apple. 
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Figure 2. 2: Random Forest model used for fruit classification. 

 

2.3.3 Support Vector Machine 

 

The support vector machine was developed by Vapnik and coworkers (Mammone et al., 2009). 

It is an algorithm that assigns labels to objects through learning by example with the primary 

goal of prediction (Noble, 2006). The support vector machine is used for regressions with three 

outcomes: continuous, multinomial, and binary. It can generalize well even when trained with 

limited samples and is most suitable in remote sensing where limited reference data is provided 

(Mountrakis et al., 2011). Support vector machine does not make any assumption on the 

datasets as it is a supervised non-parametric statistical model. The model learns through a 

process known as structural risk minimization, which minimizes classification error. However, 

studies have shown a common limitation in the support vector machine: the selection of the 
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kernel functions. A small kernel value can lead to overfitting, while high values can lead to 

over smoothing (Boswell, 2002). This problem is not limited to support vector machine but to 

all kernel models. Also, when the datasets are noisy due to distortions in the atmosphere and 

instruments, training the model becomes difficult, and the performance of the support vector 

machine classifier reduces (Mountrakis et al., 2011). Its application varies from face detection, 

remote sensing, handwriting recognition, pattern detection, text categorization, protein 

prediction, and gene expression analysis (Mammone et al., 2009). The theoretical breakdown 

of support vector machine can be found in (Boswell, 2002; Moguerza & Munoz, 2006). 

For this study, four different kernels (linear, radial, polynomial, and sigmoid) were tested 

experimentally on the data. The optimal values for the model parameters, cost, gamma, and 

epsilon were determined experimentally by assessing the effect on the forecasting performance 

(in terms of mean absolute error, mean square error and root mean square error) of the different 

possible combinations of the values for the three parameters from a predefined set of values. 

For this study, the radial kernel was selected as it outperformed other kernels. The optimal 

values for the parameters were also determined experimentally in the model. 

Support Vector Machine Algorithm 

Support vector machine algorithm is also used for both regression and classification problems. 

It has the advantage of higher speed and better performance with limited datasets. The support 

vector regression approximates the relationship between the input variable and continuous 

variable while minimizing prediction error. It maps input variables into a high-dimensional 

feature as well as determines the hyperplane which maximizes the distance between the 

hyperplane and the nearest datapoint. The mapping of the input variable to high-dimensional 

feature is done by the kernel function. The process: once the libraries are imported and read, 
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feature scaling is done to normalize the data. The model is then fitted to the datasets and a new 

result is predicted. 

 

2.3.4 Ridge and Lasso 

 

The ridge and lasso models are regularization techniques for preventing overfitting. This is 

achieved by adding a penalty to the loss function. This penalty is added to the square of 

coefficient in ridge regression and to the absolute value of the coefficient in lasso regression 

(Yang & Wen, 2018). The theory of ridge regression was first introduced by Hoerl and Kennard 

in 1970 as a possible solution to the error in least square estimators in linear regression when 

independent variables are highly correlated known as collinearity. The negative impact of 

collinearity is well documented (McDonald, 2009; Yang & Wen, 2018). Various approaches 

were developed to reduce the negative impact, but they mostly centred on variable elimination 

where one or more of the independent variables are removed to improve the performance of 

the model. However, with ridge and lasso, this problem is solved without removing any 

independent variable with the introduction of the penalty function (McDonald, 2009). The 

ridge and lasso is an improvement on the ridge regression. Despite improvement in prediction 

while using ridge regression, it does not perform covariate selection which makes models 

difficult to interpret. However, with the ridge and lasso regression, models become easier to 

interpret. Lasso stands for Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996). 

Ridge and Lasso Algorithm 

Ridge and Lasso are commonly used for large datasets that have the tendency to overfit or 

cause computational challenges. This is done using the penalty function called regularization. 

The magnitude of the coefficient features is penalized and the error between actual and 

predicted values are minimized. This is achieved by adding the sum of squared coefficients. 
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Objective = RSS + α *(sum of squared coefficients) 

Equation 2: Formula for ridge and lasso model. 

 

Where α is the regularization parameter and RSS is the Residual Sum of Squares. 

If α = 0, the objective is the same as simple linear regression and we obtain the same coefficient. 

If α = ∞, the coefficients will be zero since anything less than zero will make the objective 

infinity 

If 0 < α < ∞, the magnitude of α will determine the weight given to the objective and the 

coefficient will be between 0 and that in a simple linear regression.  

 

2.4 Evaluation metrics for Machine Learning Models for Rainfall Prediction 

 

The necessity to assess the accuracy and reliability of machine learning models for rainfall 

prediction gives rise to the evaluation metrics. These metrics help to identify the most suitable 

model for specific tasks.  The most common models for rainfall prediction are the root mean 

square error, mean absolute error, mean absolute percentage error, coefficient of determination, 

and the normalized root mean square error. While the root mean square error and the mean 

absolute error are mostly used for continuous variables, mean absolute percentage error and 

coefficient of determination are used to measure the accuracy of the model’s predictions. 

2.4.1 Root Mean Square Error 

 

The Root Mean Square Error is one of the two major performance indicators for a regression 

model along with the Mean Absolute Error. It measures the average of the squared errors 

between the values predicted by a model and its actual values. This gives an estimation of how 
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well the model can predict the target value. The lower the values, the better the predictive 

performance of the model. 

RMSD = √
∑ (𝑥𝑖 − 𝑥𝑗)2𝑁

𝑖=1

𝑁
 

Equation 3: Formula for root mean square error. 

Where N is the number data points, 𝑥𝑖  is the actual observation time series, 𝑥𝑗  is the estimated 

time series and 𝑖 is the variable.  

2.4.2 Mean Absolute Error 

 

It is the second major performance indicator for a regression model. It calculates the average 

of the absolute errors between the predicted values by the model and the actual values. Also, 

the lower the values, the better the predictive performance of the model. 

MAE = 
∑ |𝑦𝑖

𝑛
𝑖=1 − 𝑥𝑖|

𝑛
 

Equation 4: Formula for mean absolute error. 

where 𝑦𝑖  is the prediction, 𝑥𝑖  is the true value and 𝑛 is the total number of data points. 

 

2.4.3 Mean Absolute Percentage Error 

 

This is also known as the mean absolute percentage deviation. This measures the percentage 

of the absolute errors relative to the actual values. It is given by the formula: 

M = 
1

𝑁
 ∑ |

𝐴𝑡− 𝐹𝑡

𝐴𝑡
 |𝑛

𝑡=1  

Equation 5: Formula for mean absolute percentage error. 
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Where M is the mean absolute percentage error, n is the number of times the summation 

iteration occurs, 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecast value. 

 

2.4.4 Coefficient of Determination 

 

This is commonly referred to as R-squared which is a proportion of the variance in the 

dependent variable that is predictable from the independent variable. The value ranges from 0 

to 1, measuring how well the model predicts the outcome with one indicating a perfect fit. It is 

represented with this formula: 

𝑅2 = 1 − 
𝑅𝑆𝑆

𝑇𝑆𝑆
 

Equation 6: Formula for Coefficient of Determination 

Where R2 is the coefficient of determination, RSS is the sum of square residuals and TSS is the 

total sum of squares. 

2.4.5 Normalized Root Mean Square Error 

 

This is a fraction of the overall range resolved by the model. It is the root mean square error 

that is normalized by the range of observed values. This provides a measure of the error relative 

to the range of the data. It is represented by:  

NRMSD = 
𝑅𝑀𝑆𝐷

𝑦
 

Equation 7: Formular for normalized root mean square error. 

Where 𝑦 is the range (maximum value minus the minimum value) 
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2.5 Conclusion 

 

Researchers have used various machine learning models for rainfall prediction across the 

world. However, in the selection of the models used by these researchers, nothing indicates the 

criteria for selection. Most researchers either compared different models to see which one is 

best applicable to their region or select a model that has been proven to be accurate for their 

use. Since there has been no criteria for model selection, this research work picks four common 

model that have been applied in different countries and have shown high degree of accuracy. 

The four models picked have been discussed with results obtained by researchers that made 

use of the models. Other models that were not used in this work were also discussed in this 

chapter. 
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Chapter 3 

 

3.1 Methodology  

 

3.1.1 Research Design 

 

The locations chosen for this study will be selected based on two criteria. They will first be 

chosen using the different climatic zones. Cities in different regions in South Africa will also 

be chosen. The purpose of these criteria is to ensure that there is no model bias with regards to 

climate or region. Therefore, some cities will be selected with the same climatic conditions but 

in different regions. This will also assist in determining whether some models perform better 

under certain climatic conditions or whether some regions are easier to predict. If the models 

perform well across all climatic regions, it will indicate that the models can generalize. Once 

the climatic zones and cities have been identified, the data collection process will begin. 

3.1.2 Data collection 

 

40-year continuous datasets obtained from The National Aeronautics and Space Administration 

(NASA) website from 1983 was used for this study obtainable in the giovanni interactive 

visualization page. This was combined with datasets from the South African Weather Service 

(SAWS). Seven weather parameters daily measurements (dew point, temperature, rainfall, 

wind speed, relative humidity, water vapour, and cloud cover) were retrieved for each climatic 

zone and used for this study. Using the Koppen-Geiger climate classification, a point which 

corresponds to a major city will be picked in each climatic zones for analysis. Details on each 

dataset from NASA as well as timeseries examples can be found here: 

https://giovanni.gsfc.nasa.gov/giovanni/#service=TmAvMp&starttime=&endtime= 
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3.1.3 Data analysis  

 

Atmospheric parameter datasets: Datasets from 1983 to 2023 were retrieved from the NASA 

website to predict month rainfall. This was combined with datasets from the SAWS. 

Climatological parameters such as rainfall, temperature, dew point, relative humidity, water 

vapour, cloud cover and wind speed were retrieved over the different climatic zones 

corresponding to different cities in South Africa. The flowchart of the data analysis process is 

shown in figure 2 below. 

3.1.4 Pre-processing 

Once the data sets are obtained, pre-processing was done to identify the missing values and 

eliminate them as well as duplicate values. Outliers were then identified and removed from the 

datasets. Both datasets were combined to have a long-term historical data as data from SAWS 

was only made available from 1991. 

3.1.5 Correlation analysis 

A heatmap was done to determine the correlation between rainfall and the atmospheric 

variables used for this study. 

3.1.6 Data splitting 

The datasets were divided into training and test sets using the ratio 80:20. 

3.1.7 Trained models 

The models were trained using the four different models mentioned above on 80% of the 

datasets. 
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3.1.8 Test set 

The remaining 20% will be tested to see how good each model performs and then evaluated 

using various metrics. 

3.1.9 Evaluation models 

The Mean Square Error (MSE), the Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), correlation coefficient and the coefficient of determination for each model in all 

selected locations will also be determined to assess the predictive accuracy of the models. All 

these will be done using Python 3.9. 

 

Figure 3. 1: Schematic view of the data analysis process 
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Chapter 4 

 

4.0 Results and Discussion on Arid Climate Classification 

 

4.1 Arid Climate Classification 
 

4.1.1 Cold and Semi-Arid Steppe  

 

Table 4.1 shows the evaluation metrics for rainfall prediction for three locations (Bloemfontein, 

Springfontein, and Welkom) under the cold and semi-arid steppe climate classification. The 

result reveals that all four machine learning models can be employed in the region. The support 

vector machine had the highest correlation coefficient for all three locations corresponding to 

0.79, 0.74, and 0.80 for Bloemfontein, Springfontein, and Welkom respectively. This is closely 

followed by Linear regression and then Ridge and Lasso. However, for the coefficient of 

determination (R2), the best model was the linear regression with values of 0.80, 0.76, and 0.82 

for Bloemfontein, Springfontein, and Welkom respectively, followed by the Ridge and Lasso. 

For both Random Forest and Support Vector Machine, the values were below 0.50 except for 

Random Forest in Welkom. Previously, Moeletsi et al (2016) evaluated an inverse weighting 

method (IDW) for patching daily and 10-days rainfall for six weather stations in Free State 

South Africa using 58-year datasets. They showed that their IDW method was highly effective 

for daily and 10-day predictions. For Bloemfontein and Welkom, they obtained a R2 value of 

0.90 and 0.78 and a MAE of 3.17 and 5.60 for both locations respectively. 

Figure 4.1 shows that temporal variation in rainfall for the three locations under the cold and 

semi-arid steppe for Linear Regression, Random Forest, Support Vector Machine as well as the 

Ridge and Lasso. The results showed that for all locations and algorithm, the model accurately 

predicted the seasonal variability of rainfall, though they all underestimated the amount of 

rainfall received. For Springfontein, the model correctly predicted the seasonal variation with 
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90% accuracy for the first five years between 2016 and 2020 but underestimated especially in 

2021 and 2022. Linear regression, random forest and the support vector machine all modelled 

the spike in 2017 rainfall estimates but overestimated the increase while from 2020. They all 

underestimated the amount of rainfall received in Springfontein. The underestimation in 2021 

and 2022 may be due to the region receiving more rainfall than usual. In a semi-arid climate, 

it experiences over 230 dry days in a year, an average annual temperature of 22oC, and an 

average humidity of 48%. Unfortunately, none of the models could accurately predict the 

unexpected spike in the annual rainfall. This increase in 2021 was also recorded in 

Bloemfontein by all models. Weather Sa (2022) reported that rainfall in Bloemfontein in 2021 

increased by about 150mm compared to the decadal average. Although similar increase was 

experienced in Welkom, all the models were able to predict the spike. However, none of the 

models could still accurately estimate the amount of rainfall received. 

This pattern of high rainfall in 2021/2022 and underestimation of the model was expected in 

almost all locations as South Africa received above normal annual rainfall. This was attributed 

to the El Nino-Southern Oscillation (ENSO) being in a La Nina phase. Sivakumar and Fazel-

Rastgar (2023) revealed the presence of active frontal system with continuous rainfall in 2022. 

They also attributed the increase to the injection of high humidity from extended warmer 

isotherms.  

From the heatmap in appendix A, dew point, cloud cover, and water vapour are essential for 

rainfall prediction in Bloemfontein as their correlation with rainfall are 0.67,0.69, and 0.68 

respectively. These same parameters correlated with rainfall with coefficients of 0.72,0.71, 0.71 

for dew point, cloud cover and water vapour respectively for Springfontein. In Welkom, the 

parameters that correlated best with rainfall were dew point, cloud cover, water vapour and 

temperature with coefficients all corresponding to 0.68 except for temperature which has a 

correlation coefficient of 0.56. Relative humidity and wind speed had the lowest coefficients 
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of 0.11 and -0.13 respectively in Bloemfontein. These two variables also had the lowest in 

Springfontein corresponding to 0.16 and -0.29 for relative humidity and wind speed 

respectively. In Welkom, relative humidity and rainfall had a correlation of 0.29 while rainfall 

and windspeed had a correlation of -0.026. This result reveals that relative humidity and wind 

speed are not very essential for rainfall prediction for cold and semi-arid steppe. Atmospheric 

parameters such as dewpoint, water vapour, cloud cover, and temperature should be used for 

accurate predictions. 

Table 4. 1: Table showing models evaluation metrics for cold and semi-arid steppe climate 

classification (Bloemfontein, Springfontein, and Welkom) 

Linear Regression 

 

Locations MAE MSE RMSE r R-Square 

Bloemfontein 0.95 1.40 1.18 0.76 0.80 

Springfontein 0.80 0.98 0.99 0.72 0.76 

Welkom 1.01 1.70 1.30 0.76 0.82 

Random Forest 

 

Bloemfontein 1.07 3.13 1.77 0.76 0.49 

Springfontein 1.11 3.82 1.96 0.67 0.39 

Welkom 1.06 2.53 1.59 0.74 0.51 

Support Vector Machine 

 

Bloemfontein 1.10 3.48 1.87 0.79 0.44 

Springfontein 1.07 3.69 1.92 0.74 0.41 
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Welkom 1.06 2.69 1.64 0.80 0.48 

Ridge and Lasso 

 

Bloemfontein 1.24 3.63 1.90 0.75 0.69 

Springfontein 1.23 4.09 2.02 0.69 0.69 

Welkom 1.12 2.64 1.62 0.79 0.67 
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Figure 4. 1: Figures showing the predicted and actual rainfall for models used and locations 

under the cold and semi-arid steppe climate classification. 

4.1.2 Cold Arid Desert  

 

For the cold arid desert, the support vector machine had the highest correlation coefficient of 

0.72 in Bristown closely followed by random forest model with a coefficient of 0.71 while 

those of linear regression, ridge and lasso were 0.66 and 0.65 respectively as shown in table 

4.2 Similarly, the support vector machine model had higher correlation coefficient compared 

to other models for Beaufort West corresponding to 0.65 closely followed by ridge and lasso 

and the linear regression corresponding to 0.64 and 0.60 respectively. However, for Alexander 

Bay, none of the models had a correlation coefficient higher than 0.15 nor a coefficient of 

determination higher than 0.14. The reason for this is yet to be determined and would be further 

examined. Perhaps, it being officially the driest town in South Africa may contribute partly to 
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this (South African yearbook, 2012). The models showed pattern of poor prediction in regions 

with low rainfall (Sungkawa & Rahuyu, 2019). Alexander Bay receives an annual rainfall of 

less than 51mm with the cold Benguela current influencing its climate. The mean absolute 

error, mean square error, and the root mean square error for random forest, support vector 

machine, ridge and lasso were all similar for all locations, however, the values were higher for 

linear regression in all locations. For ridge and lasso, Beaufort west had a coefficient of 

determination of 0.86 and correlation coefficient of 0.64. This is great as trend prediction and 

analysis using ridge and lasso can help farmers mitigate the negative impact of droughts on 

their sheep farming and aid proper planning (Parker, 2020). Notable parts of South Africa have 

been declared as disaster drought area (National Drought Task Team, 2015). The resultant 

effect of this is the increased mortality rate in livestock due to unavailability of water, loss of 

diary and livestock production, as well as disruption in the reproduction cycle in animals. It 

also increases unemployment as industries relying on agricultural produce such as fertilizer 

manufacturers are lost, food prices increase due to damage to crop quality and reduced food 

production. The impact of drought is not limited to its economic impacts, but it also has 

environmental impacts as it leads to degradation of animal habitats, inferior crops, decreased 

water quality and insufficient drinking water, soil erosion and fire outbreak (Parker, 2020). 

Figure 4.2 shows the monthly variation in rainfall for Alexander Bay, Beaufort West, and 

Bristown using different models. As expected, Alexander Bay received least amount of rainfall 

with a monthly average below 1mm. The models were able to accurately predict the seasonal 

variation in rainfall for all locations and all models. Random forest performed better in 

estimating the amount of rainfall received for both Beaufort West and Bristown. While 

evaluating these regions, Linear regression’s estimate for rainfall in Bristown was better. 

Deman et al (2022) revealed the challenge in reliable long-term rainfall prediction due to the 

area susceptibility to droughts and floods. They stated the need to use ridge and lasso regression 
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models as they outperformed dynamical climate prediction models. They however cautioned 

on selecting independently the predictors for both train and test data as they may result in biased 

results which do not correctly reflect the accuracy of the models. 

The heatmap in the appendix A showed that no atmospheric parameter correlated with rainfall 

in Alexander Bay. This may be expected as there is little or no rainfall in this city. The 

atmospheric variables used for this study had correlation coefficients of 0.084, 0.018, -0.078, 

0.20, 0.11, and -0.096 for dewpoint, relative humidity, temperature, cloud cover, water vapour, 

and wind speed respectively. Therefore, to make any prediction, historical rainfall datasets 

would be the best datasets to be used. However, other atmospheric variables had high 

correlation between them, especially with dewpoint. Dewpoint had a correlation of 0.91, 0.92, 

and 0.76 with relative humidity, water vapour, and temperature. For Beaufort West, only dew 

point and water vapour had a correlation above 0.50 with rainfall. Dew point corresponded to 

0.55 while water vapour corresponded to 0.57. For other atmospheric variables, their 

correlation with rainfall corresponds to 0.045, 0.27, 0.37, and -0.38 for relative humidity, 

temperature, cloud cover, and wind speed.  Similar to locations under the cold and semi-arid 

steppe climate, rainfall in Bristown had the best correlation coefficient corresponding to 0.65, 

0.66, 0.64 for dew point, cloud cover, and water vapour respectively. Its correlation with 

relative humidity, temperature, and wind speed are 0.22, 0.29, and -0.35. This shows that the 

most important variables to consider for rainfall prediction are dewpoint, water vapour, and 

cloud cover in the cold arid desert. 
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Table 4. 2: Table showing models evaluation metrics for cold arid desert climate classification 

(Alexander Bay, Beaufort West, and Bristown) 

Linear Regression 

 

Locations MAE MSE RMSE r R-Square 

Alexander Bay 1.50 3.75 1.94 0.14 0.12 

Beaufort West 0.69 0.78 0.88 0.60 0.14 

Bristown 0.77 0.94 0.97 0.66 0.65 

Random Forest 

 

Alexander Bay 0.13 0.04 0.19 0.01 -0.31 

Beautfort West 0.62 0.97 0.99 0.55 0.30 

Bristown 0.67 1.08 1.04 0.71 0.44 

Support Vector Machine 

 

Alexander Bay 0.11 0.03 0.18 0.15 -0.22 

Beaufort West 0.55 0.94 0.97 0.65 0.32 

Bristown 0.65 1.23 1.11 0.72 0.36 

Ridge and Lasso 

 

Alexander Bay 0.12 0.03 0.18 0.06 0.14 

Beaufort West 0.62 0.92 0.96 0.64 0.86 

Bristown 0.73 1.30 1.14 0.65 0.74 
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Figure 4. 2: Figures showing the predicted and actual rainfall for models used and locations 

under the cold arid desert climate classification. 

4.1.3 Hot and Semi-Arid Steppe  

 

Table 4.3 presents the evaluation metrics for the four models used in this study for Kimberly, 

Mahikeng, and Port Elizabeth, under the hot and semi-arid steppe climate classification. These 

cities are situated in three different provinces. Kimberly in Northern Cape Province, Mahikeng 

in North-West Province, and Port Elizabeth in the Eastern Cape Province of South Africa. The 

result revealed that linear regression was best for rainfall prediction in Kimberly with a 

correlation coefficient of 0.85 and coefficient of determination of 0.82 as seen in table 4.3. 

These values were equally high for other models. For random forest, support vector machine, 

ridge and lasso, the correlation coefficients are 0.79, 0.84, and 0.82 respectively while the 

coefficients of determination for these models are 0.59,0.61, and 0.68. Also, high values were 
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obtained for all models in Mahikeng. This shows that these two locations are suitable for 

machine learning applications in atmospheric sciences. Tladi et al (2023) carried out a 

correlation analysis using gradient boosting regression on the upper crocodile sub-basin which 

cuts across Mahikeng. Their results also showed that the atmospheric parameters in Mahikeng 

are suitable for rainfall prediction. They obtained coefficient of determination of about 0.80, 

mean square values ranging from 0.03 to 0.30 and mean average error ranging from 0.12 to 

0.50. These values were lower than what was obtained in this study. This may be attributed to 

their study only focusing on groundwater levels. However, in Port Elizabeth, the correlation 

coefficients were 0.13, 0.29, 0.43, 0.30 for linear regression, random forest, support vector 

machine, and ridge and lasso respectively. The coefficient of determination for these models 

were also significantly low. Yakubu et al (2021) predicted precipitation in Port Elizabeth using 

two machine learning models – multiple linear regression and multilayered perceptron. They 

made use of five cloud properties, cloud optical thickness, cloud effective radius, cloud top 

temperature, cloud top pressure, and liquid water path for their model. Their result showed a 

correlation coefficient above 0.70. This may be responsible for the low values obtained in Port 

Elizabeth as only one cloud property was used in this study. In subsequent studies, other cloud 

properties can be used as parameters for rainfall prediction to determine if they will perform 

better than the selected atmospheric parameters. 

Figure 4.3 shows the temporal variation in rainfall for various locations using different models. 

The result also revealed consistent pattern in modelling the interannual variation in rainfall for 

all models. For Kimberly, random forest as well as ridge and lasso almost accurately estimated 

the amount of rainfall received. However, there was an overestimation of rainfall by random 

forest in 2016, perhaps the model was still understanding the datasets. Support vector machine 

had a better predictive performance in 2023 for Kimberly. Similar pattern is also observed in 

Mahikeng. However, there was an overestimation of rainfall in 2021 which none of the models 
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could accurately predict. All the models estimated the seasonal variability well. Despite low 

evaluation metrics for Port Elizabeth, the models also performed well in predicting the 

seasonality of rainfall for the right years of prediction. It however underestimated rainfall in 

2019 and 2023. 

The heatmap for the correlation between rainfall and other atmospheric variables under the hot 

and semi-arid steppe is shown in appendix A. The result reveals that all atmospheric variables 

in Mahikeng had a correlation coefficient with rainfall exceeding 0.50 except wind speed which 

had a correlation of -0.18. Dewpoint, relative humidity, temperature, cloud cover, and water 

vapour correlation coefficients correspond to 0.76, 0.55, 0.56, 0.74, and 0.78 respectively. As 

with most cities under the arid climate classification, dewpoint, water vapour and cloud clover 

had the highest correlation with rainfall. In Kimberly, water vapour had the highest correlation 

with rainfall with a coefficient of 0.78 closely followed by cloud cover and dew point 

corresponding to 0.77 and 0.76 respectively, while temperature had a coefficient of 0.50. For 

relative humidity and wind speed, their correlation coefficients with rainfall were 0.36, and -

0.33 respectively. Port Elizabeth showed similar pattern to what was obtained in Alexander 

Bay with all atmospheric variables having low correlation with rainfall. The result shows that 

dewpoint, relative humidity, temperature, cloud cover, water vapour, and wind speed correlated 

with rainfall with 0.17, 0.20, 0.06, 0.25, 0.21, 0.054 coefficients respectively. Also, just as it 

happened in Alexander Bay, relative humidity, temperature, and water vapour had high 

correlation with dewpoint corresponding to 0.91, 0.78, and 0.98 respectively. 

 

 

 



55 
 

Table 4. 3: Table showing models evaluation metrics for hot and semi-arid steppe climate 

classification. 

Linear Regression 

 

Locations MAE MSE RMSE r R-Square 

Kimberly 0.93 1.35 1.16 0.85 0.82 

Mahikeng 1.09 1.85 1.36 0.75 0.84 

Port Elizabeth 0.76 0.94 0.97 0.13 0.28 

Random Forest 

 

Kimberly 0.89 1.75 1.32 0.79 0.59 

Mahikeng 0.94 2.14 1.46 0.78 0.60 

Port Elizabeth 0.82 1.17 1.08 0.29 0.01 

Support Vector Machine 

 

Kimberly 0.86 1.65 1.29 0.84 0.61 

Mahikeng 0.91 2.22 1.49 0.78 0.59 

Port Elizabeth 0.78 1.19 1.09 0.43 -0.01 

Ridge and Lasso 

 

Kimberly 0.97 1.83 1.35 0.82 0.68 

Mahikeng 1.06 2.55 1.60 0.75 0.67 

Port Elizabeth 0.78 1.10 1.05 0.30 0.47 



56 
 

 

 



57 
 

 

 



58 
 

 

 



59 
 

 

 



60 
 

 

 



61 
 

 

 

 



62 
 

Figure 4. 3: Figures showing the predicted and actual rainfall for models used and locations 

under the hot and semi-arid steppe climate classification. 

4.1.4 Hot Arid Desert  

 

This is the last zone under the arid climate classification. Lauville in Mpumalanga Province, 

Musina in Limpopo Province, and Upington in Northern Cape Province were selected for the 

hot arid desert classification. These regions are in the northern and northwestern part of South 

Africa. Table 4.4 shows the evaluation metrics for the models used for the study for the three 

locations. In Lauville, support vector machine had the highest correlation coefficient of 0.60 

while linear regression had the highest coefficient of determination of 0.76. Musina had a 

relatively high correlation coefficient for all models ranging from 0.68 for ridge and lasso to 

0.79 for support vector machine. Values for linear regression and random forest are 0.69 and 

0.74 respectively. Linear regression had the highest coefficient of determination of 0.75 in 

Musina while that of random forest, support vector machine, ridge and lasso are 0.52, 0.59, 

0.39 respectively. This result presents hope for farmers in Musina as many of them complain 

of decreased agricultural produce within the last five years due to insufficient amount of rainfall 

and water scarcity (Mokgwathi, 2018). With accurate prediction, farmers can be better prepared 

for drought. In Upington, the correlation coefficients are 0.64, 0.66, 0.69, 0.63 and coefficient 

of determination of 0.71, 0.43, 0.40, and 0.5 for linear regression, random forest, support vector 

machine, and ridge and lasso respectively. There is the need to study Upington more closely 

due to its changing environmental and atmospheric condition at a rate different from global and 

continental estimates (Strydom et al., 2019). The significant decrease in the amount of rainfall 

in this region poses a major challenge for livestock farming (Roffe et al., 2021). The mean 

absolute error, mean square error and the root mean square for all models in Lauville and 

Upington were in a similar range. The values were also similar for all models in Musina except 

for linear regression where the value is about double. 
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Figure 4.4 shows the graph of actual and predicted rainfall using different models for the three 

locations under the hot arid climate classification. The result showed that random forest 

performed best in Upington as it was able to predict the increased rainfall in 2022 as well as its 

seasonal variability. It however performed poorly in rainfall estimation between 2015 and 2018 

after which the performance was good. Other models have similar pattern in Upington. For 

Musina, Ridge and Lasso as well as random forest also performed best compared to linear 

regression as they also accurately predicted the seasonal variation with underestimation of 

rainfall in 2018, 2021, and 2022. All models performed well in Lauville. 

The heatmap of the correlation of atmospheric parameters with rainfall showed that cloud cover 

had the best coefficient in Lauville and Upington corresponding to 0.65 and 0.61 respectively. 

In Musina, the best correlation with rainfall was with water vapour corresponding to 0.64 

closely followed with cloud cover and dew point corresponding to 0.62 and 0.60 respectively. 

Other atmospheric variables also had good correlation with rainfall in Lauville. Dewpoint, 

relative humidity, temperature, and water vapour all correlated with rainfall with coefficients 

corresponding to 0.51, 0.55, 0.45, and 0.58 respectively. Although most atmospheric variables 

had correlation coefficient greater than 0.50 with rainfall, only for cloud cover is the correlation 

coefficient higher than 0.60 in Lauville. This is similar to Upington as only cloud cover 

correlated with rainfall with coefficient greater than 0.60. Dewpoint, relative humidity, 

temperature, water vapour, and wind speed had correlation coefficients of 0.59, 0.35, 0.23, 

0.56, and -0.41 respectively with rainfall at Upington. In Musina, only relative humidity, 

temperature, and wind speed had correlated with rainfall with coefficients below 0.60. The 

values correspond to 0.37, 0.39, and 0.14 for relative humidity, temperature, and wind speed 

respectively. 
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Table 4. 4: Table showing models evaluation metrics for hot arid desert climate classification. 

Linear Regression 

 

Lauville 1.07 2.04 1.43 0.53 0.76 

Musina 1.44 3.04 1.74 0.69 0.75 

Upington 0.93 1.36 1.17 0.64 0.71 

Random Forest 

 

Lauville 1.17 2.41 1.55 0.51 0.12 

Musina 0.76 1.01 1.01 0.74 0.52 

Upington 0.57 0.59 0.77 0.66 0.43 

Support Vector Machine 

 

Lauville 1.13 2.02 1.42 0.60 0.26 

Musina 0.66 0.86 0.93 0.79 0.59 

Upington 0.56 0.63 0.79 0.69 0.40 

Ridge and Lasso 

 

Lauville 1.09 1.94 1.39 0.57 0.51 

Musina 0.80 1.09 1.04 0.68 0.39 

Upington 0.58 0.63 0.79 0.63 0.51 
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Figure 4. 4: Figure 9: Figures showing the predicted and actual rainfall for models used and 

locations under the hot arid desert climate classification. 
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Chapter 5: Results and Discussion on Subtropical Wet Weather Classification 

 

5.0 Subtropical Wet Weather Classification 

 

5.1 Humid Subtropical with Dry Winter  

 

This section presents the rainfall prediction models for the subtropical wet climate 

classification. This climate classification is divided into two, the humid subtropical climate 

with dry winter and the subtropical highland climate with dry winter. For the humid subtropical 

climate with dry winter, Dundee in KwaZulu Natal Province, Louis Trichardt in Limpopo 

Province, and Nelspruit in Mpumalanga Province were selected. Table 5.1 reveals the 

evaluation metrics for the four models used in this study – Linear regression, random forest, 

support vector machine, and the ridge and lasso models. The table indicates that random forest 

had the highest correlation coefficient with a value of 0.77 in Dundee closely followed by the 

support vector machine model with a value of 0.76. For linear regression and ridge and lasso 

models in Dundee, the correlation coefficients were 0.70 and 0.73 respectively. For the 

coefficient of determination in Dundee, the values were 0.66, 0.65, 0.54, 0.53 for ridge and 

lasso, support vector machine, linear regression, and random forest respectively. Charpentier 

et al (2023) assessed the rainfall pattern in KwaZulu Natal province using datasets from 1970 

to 2017. They linked the years of extreme dryness with cyclonic events induced by the El Nino 

and reported Dundee as one of the most affected areas during time of extreme drought. With 

agriculture being the major occupation in this region, it is necessary to correctly predict the 

amount of rainfall expected and to prepare farmers for drought seasons. 

 In Nelspruit, the best model with respect to the correlation coefficient is the support vector 

machine with a value of 0.76 followed by random forest corresponding to 0.72. The values of 

these coefficients for ridge and lasso as well as linear regression are 0.71 and 0.69 respectively. 

However, linear regression had the highest coefficient of determination of 0.84 followed by 
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ridge and lasso with a value of 0.61. Comparing the locations selected for the humid subtropical 

climate with dry winter, Louis Trichardt had the highest correlation coefficient corresponding 

to 0.81, 0.76, 0.76, 0.74 for support vector machine, random forest, ridge and lasso, and linear 

regression while their coefficient of determination corresponds to 0.65, 0.52, 0.59, and 0.78 

respectively.  This result performed better than what was obtained by van Tol et al (2020) when 

they estimated the hydrological response in Stevenson Hamilton research supersite of the 

Kruger National Park, a park which spans across Mpumalanga and Limpopo provinces. They 

used parametric data model using measured properties of soil, soil matric potentials, and 

evapotranspiration data. Their model had a correlation coefficient ranging from 0.58 to 0.69. 

In Nelspruit, the values of the mean absolute error, mean square error and root mean square 

error for linear regression, random forest, as well as the ridge and lasso models were similar 

while the values for the support vector machine were lower. Louis Trichardt also had similar 

values for both ridge and lasso and random forest models. While the values of these metrics in 

the support vector machine model were lower, they were much higher for linear regression. 

However, in Dundee, support vector machine and random forest had similar values in these 

metrics while values for these metrics in linear regression as well as ridge and lasso were not 

far apart. 

Figure 5.1 shows the actual and predicted rainfall for these locations using different models. 

The datasets available in Dundee were from 1983 to 2017 compared to other datasets available 

to 2023. The datasets were later updated to 2023. However, using the datasets to 2017, the 

prediction was from 2012 to 2017 and all models accurately modelled the seasonal variations 

as well as rainfall estimates for all years except 2016. The same can be said for both Louis 

Trichardt and Nelspruit as all models predicted the seasonal variability and underestimation of 

rainfall in 2022. Reasons for underestimation in 2022 had been discussed in earlier chapter. 

Linear regression performed best in Nelspruit followed by random forest, then ridge and lasso. 
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While in Louis Trichardt, ridge and lasso performed best in predicting the amount of rainfall 

received followed by the linear regression model.  

The heatmap as presented in the appendix showed that rainfall and water vapour both at Dundee 

and Nelspruit had the best correlation coefficient with a value of 0.71 in both cities. Water 

vapour also had the best correlation with rainfall in Louis Trichardt with a value of 0.66. Dew 

point, temperature, and cloud cover had a correlation coefficient of 0.66, 0.60, and 0.69 

respectively with rainfall in Nelspruit while in Dundee, their correlation with rainfall 

corresponds to 0.59, 0.66, -0.49 respectively. Relative humidity had a correlation coefficient of 

0.66 with rainfall in Dundee. The result of the correlation between cloud cover and rainfall in 

Dundee is quite strange as cloud cover and rainfall have shown to have one of the highest 

degrees of correlation in other cities. This reason for this is yet to be determined. In Louis 

Trichardt, apart from water vapour, only dew point and cloud cover had a correlation coefficient 

greater than 0.50 with rainfall corresponding to 0.62 and 0.63 respectively. Relative humidity, 

temperature, and wind speed all had a coefficient corresponding to 0.44, 0.45, and 0.11 with 

rainfall respectively. 

Table 5. 1: Table showing models evaluation metrics for humid subtropical with dry winter 

climate classification. 

Linear Regression 

 

Dundee 1.59 3.72 1.93 0.70 0.54 

Louis Trichardt 1.32 2.67 1.63 0.74 0.78 

Nelspruit 1.13 2.21 1.49 0.69 0.84 

Random Forest 
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Dundee 1.11 2.30 1.52 0.77 0.53 

Louis Trichardt 0.72 1.04 1.02 0.76 0.52 

Nelspruit 1.10 2.35 1.53 0.72 0.49 

Support Vector Machine 

 

Dundee 1.04 2.13 1.46 0.76 0.65 

Louis Trichardt 0.62 0.77 0.88 0.81 0.65 

Nelspruit 0.93 1.95 1.40 0.76 0.58 

Ridge and Lasso 

 

Dundee 1.40 2.85 1.69 0.73 0.66 

Louis Trichardt 0.79 1.06 1.03 0.76 0.59 

Nelspruit 1.13 2.41 1.55 0.71 0.61 
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Figure 5. 1: Figures showing the predicted and actual rainfall for models used and locations 

under the humid subtropical with dry winter climate classification. 

5.2 Subtropical Highland with Dry Winter  

 

The subtropical highland climate with dry winter, Harrismith in the Free State Province, 

Johannesburg in the Gauteng Province, and Newcastle in KwaZulu Natal Province were 

selected. This climatic condition is mostly found around the centre of South Africa. Table 5.2 

shows the evaluation metrics for the locations using the four models employed in this study. 

Apart from Johannesburg, the other two locations had high correlation coefficient and 

coefficient of determination. For all four models, the correlation coefficient in Harrismith was 

not less than 0.80. It corresponds to 0.84, 0.82, 0.82, and 0.82 for support vector machine, 

linear regression, random forest, and ridge and lasso. All models apart from linear regression 

had a coefficient of determination of 0.68 in Harrismith while that of linear regression was 

0.89. Random forest and the support vector machine were very similar for all evaluation 

metrics for Newcastle. Ndlovu et al (2021) performed an assessment on the impact of climate 

variability change in six cities of KwaZulu Natal province including Newcastle due to the risk 

rainfall and air temperature variability pose to environmental change. Their result showed that 

Newcastle experience distinct changes in both inter and intra-seasonal rainfall fluctuations. 

Their result also revealed a decreasing trend in the number of rainy days from 1986 to 2016 

indicating the necessity for proper planning. They obtained a coefficient of determination of 

0.32 which is lower than what was obtained in this study.  In Johannesburg, the support vector 

machine as well as ridge and lasso had close values for the evaluation metrics, the same with 

linear regression and random forest also in Johannesburg. Gidey and Mhangara (2023) used 

random forest to analyse the impact of land use change on surface water resources in 

Johannesburg and obtained a correlation coefficient of 0.60. However, Obiora et al (2020) 

suggested the use of support vector machine for solar irradiance prediction in Johannesburg. It 
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is suggested that for better predictive performance, other atmospheric variables and machine 

learning models be explored in Johannesburg. 

Figure 5.2 shows the temporal variation in rainfall with predicted values. The result indicated 

that all model correctly models the trend in rainfall variation from one season to another. High 

rainfall in 2021 were not accurately modelled by all models in Harrismith with random forest 

being the closest in estimating the amount of rainfall received. In Newcastle, the models also 

could not correctly estimate the amount of rainfall received in 2022 in Newcastle, however, 

they performed better in other years. This same trend can also be seen in Johannesburg for all 

models. 

The heatmap showing the correlation between rainfall and other atmospheric parameters in 

Harrismith showed high correlation coefficients of 0.78, 0.72, 0.61, and 0.50 with cloud cover, 

water vapour, dew point, temperature, and relative humidity respectively, while that of rainfall 

and wind speed is -0.42. There was also a negative correlation coefficient of -0.31 and -0.019 

between rainfall and wind speed in Newcastle and Johannesburg respectively. Cloud cover had 

the best correlation coefficient of 0.69 with rainfall in Newcastle, closely followed by 0.67, 

0.64, 0.62 for water vapour dew point, and temperature while that of relative humidity 

corresponds to 0.42. In Johannesburg, only cloud cover had a correlation coefficient greater 

than 0.50 corresponding to 0.51. Dewpoint and water vapour both had a correlation coefficient 

of 0.50 with rainfall. The correlation between other atmospheric variables and rainfall was 

below 0.50 with the coefficients of relative humidity, temperature, and wind speed 

corresponding to 0.27, 0.40, and -0.019 respectively. 
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Table 5. 2: Table showing models evaluation metrics for subtropical highland with dry winter 

climate classification. 

Linear Regression 

 

Harrismith 0.80 1.25 1.12 0.82 0.89 

Johannesburg 1.17 2.26 1.50 0.50 0.49 

Newcastle 0.97 1.77 1.34 0.69 0.86 

Random Forest 

 

Harrismith 0.96 1.63 1.28 0.82 0.68 

Johannesburg 1.04 1.94 1.39 0.42 0.08 

Newcastle 1.08 2.53 1.59 0.77 0.59 

Support Vector Machine 

 

Harrismith 0.86 1.59 1.26 0.84 0.68 

Johannesburg 0.95 1.66 1.29 0.54 0.21 

Newcastle 1.00 2.54 1.60 0.78 0.59 

 Ridge and Lasso 

 

Harrismith 1.13 2.10 1.45 0.80 0.68 

Johannesburg 0.99 1.60 1.27 0.50 0.34 

Newcastle 1.35 3.43 1.85 0.70 0.60 
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Figure 5. 2: Figures showing the predicted and actual rainfall for models used and locations 

under the subtropical highland with dry winter climate classification. 
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Chapter 6: Results and Discussion on Subtropical Dry Climate Classification 

 

6.0 Subtropical Dry 

 

6.1 Humid Subtropical without Dry Season  

 

This chapter presents the models’ performance for rainfall prediction for the subtropical dry 

climate. This climate condition is sub-divided into three: the humid subtropical without dry 

season, temperate oceanic without dry season, and the warm and dry summer. For the humid 

subtropical without dry season, three locations were selected: Durban, Port Edwards, and 

Richards Bay. Table 6.1 presents the evaluation metrics for different machine learning models. 

For all models, the correlation coefficient in Port Edward was higher than other locations. The 

coefficients 0.69, 0.66, 0.64, 0.63 corresponded to support vector machine, random forest, ridge 

and lasso, and linear regression. However, the coefficient of determination was below 0.50 for 

all models in Port Edwards apart from linear regression which had a value of 0.79. Ridge and 

Lasso had the highest coefficient of determination in Durban corresponding to 0.89 and 

correlation coefficient of 0.60. High coefficient of determination value of 0.76 was obtained 

with linear regression in Durban and a correlation coefficient of 0.53. using the 

backpropagation neural network, Ahuna et al (2019) predicted rain attenuation in Durban and 

obtained a correlation coefficient of 0.83 for their model. This model performed better than the 

models used for this research. For their work, they made use of only rainfall data ranging from 

drizzle to super storms. On the east coast of Durban and Port Elizabeth, Ingreso (2022) 

developed an open loop nonlinear autoregressive network with exogenous inputs to predict sea 

level using five atmospheric inputs. She observed that their model performed better when all 

inputs were considered than when anyone was left out of the model. She obtained a correlation 

coefficient of 0.85 for her prediction. 
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In Richards Bay, all model performed badly with respect to the correlation coefficient as they 

were all below 0.50 for all models. Similarly, the coefficient of determination value was also 

below 0.40 for all models except linear regression whose value corresponds to 0.60. This result 

shows that either the support vector machine or linear regression can be used to predict rainfall 

in Port Edwards while the ridge and lasso model is advisable to be used for prediction in 

Durban.  

Figure 6.1 shows the model performance in rainfall prediction for the selected locations. All 

models predicted the seasonality of rainfall accurately as well as estimated values. None of the 

models could accurately predict the flood that took place in Durban in 2022. The extreme 

rainfall experienced in Durban in 2022 has been well documented. Mashao et al (2023) reported 

that this was related with the mid-tropospheric cut-off low pressure system which affected the 

entire east coast of South Africa. The result also shows that underestimation of rainfall was 

more for the models in Port Edwards, perhaps due to the low values of the coefficient of 

determination in this region. The same can be observed in Richards Bay with low estimation 

of amount of rainfall received but accurate prediction of its seasonality. The result also showed 

that although the ridge and lasso model performed best in Durban, the support vector machine 

model was close, and it performed better in Port Edwards and Richards Bay. 

The heatmap on the correlation between rainfall and other atmospheric parameters for humid 

subtropical without dry season is seen in Appendix A. The result shows that in Durban, only 

cloud cover had a correlation above 0.60 corresponding to 0.65. However, other atmospheric 

variables such as dewpoint, relative humidity, and water vapour also had high correlation 

corresponding to 0.51, 0.55, and 0.58 respectively. Temperature and wind speed had correlation 

coefficient less than 0.50 with rainfall corresponding to 0.45 and 0.10 respectively in Durban. 

In Port Edwards, the highest correlation between rainfall and other atmospheric variables is 

with cloud cover corresponding to 0.69 followed by water vapour corresponding to 0.64. Dew 
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point and relative humidity also had high correlation corresponding to 058 and 0.59 

respectively while temperature and wind speed had correlations of 0.49 and -0.051 with 

rainfall. 

However, in Richards Bay, all atmospheric variables showed negative correlation with rainfall. 

The values of this correlation are -0.36, -0.25, -0.48, -0.30, -0.40, and -0.23 for dewpoint, 

relative humidity, temperature, cloud cover, water vapour, and wind speed respectively. The 

reason for this result is yet to be determined. As in Alexander Bay and Port Elizabeth, high 

correlation can be seen among other atmospheric variables especially with dew point. Relative 

humidity, temperature, cloud cover, and water vapour all correlated with dewpoint with 

coefficients corresponding to 0.79, 0.74, 0.59, and 0.86 respectively. 

Table 6. 1: Table showing models evaluation metrics for humid subtropical without dry 

season climate classification. 

Linear Regression 

 

Durban 1.07 2.02 1.42 0.53 0.76 

Port Edward 0.98 1.63 1.28 0.63 0.79 

Richards Bay 2.46 10.61 3.26 0.37 0.60 

Random Forest 

 

Durban 1.17 2.40 1.55 0.51 0.13 

Port Edward 1.07 1.96 1.40 0.66 0.42 

Richards Bay 0.60 0.67 0.82 0.41 0.13 

Support Vector Machine 
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Durban 1.11 2.03 1.42 0.58 0.26 

Port Edward 1.03 2.02 1.42 0.69 0.39 

Richards Bay 0.56 0.66 0.81 0.44 0.15 

Ridge and Lasso 

 

Durban 1.08 1.92 1.38 0.60 0.89 

Port Edward 1.03 2.02 1.42 0.64 0.37 

Richards Bay 0.61 0.67 0.82 0.37 0.35 

 

 



94 
 

 

 



95 
 

 

 



96 
 

 

 



97 
 

 

 



98 
 

 

Figure 6. 1: Figures showing the predicted and actual rainfall for models used and locations 

under the humid subtropical without dry season climate classification. 
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6.2 Temperate Oceanic without Dry Season  

 

The temperate oceanic climate classification without dry season is mostly found in the Eastern 

Cape Province of South Africa. This is located in the southern part of the country. The locations, 

East London, George, and Mthatha were selected for this section. While East London and 

Mthatha are situated in the Eastern Cape Province, George is in the Western Cape Province. 

Table 6.2 presents the evaluation metrics for the four models used in this study. The result 

shows low correlation coefficient and coefficient of determination for all models in George 

with both metrics having a value below 0.40 for all models. The mean average error, mean 

square error and root mean square error for all models in George were within the same range 

for all models. The models performed best in Mthatha with a coefficient of determination and 

correlation of 0.82 and 0.72 with linear regression, 0.51 and 0.74 respectively for random 

forest. For support vector machine, the values correspond to 0.46 and 0.73 while ridge and 

lasso had values corresponding to 0.45 and 0.72 for the R-squared and correlation coefficient. 

For East London, all values of the coefficient of determination were less than 0.45 while the 

correlation coefficient ranged from 0.53 using linear regression to 0.62 with support vector 

machines. Ridge and lasso and random forest had values corresponding to 0.58 and 0.59 

respectively. 

Figure 6.2 shows the performance of the models in predicting and estimating the amount of 

rainfall received for the three East London, George, and Mthatha. The models performed well 

with predicting and estimating amount of rainfall received in East London with 

underestimation in 2023 and 2023. The underestimation was more pronounced with random 

forest in Mthatha while ridge and lasso as well as the support vector machine performed better 

in rainfall estimation. This study in Mthatha is particularly important as it has always been 

affected by drought. Nkamisa et al (2022) analysed the trends of recurrences of drought in 

Mthatha and other locations in Eastern Cape and reported its high intensity. Mahlalela et al 
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(2020) reported decreasing trend in the amount of rainfall received as well as in the number of 

rainfall days. In George, the models seem to accurately predict both seasonality and estimation 

of rainfall received for all years except 2023 where there was an unusual increase in the amount 

of rainfall received. Values of rainfall below 3mm reveals the perplexing situation in George, 

a town notable for severe drought. According to Lottering (2015), the drought in George is 

primarily due to lack of rainfall for a prolonged period. Botai et al (2017) reported that due 

George’s drought, water reservoirs are below 30% capacity resulting in socio-economic 

impacts. 

The heatmap of rainfall correlation with other atmospheric variables under the temperate 

oceanic without dry season is seen in Appendix A for East London, Mthatha, and George. In 

East London, only temperature and wind speed had correlation coefficients lower than 0.50 

corresponding to 0.36 and -0.20 respectively. Dewpoint, relative humidity, cloud cover, and 

water vapour had coefficients corresponding to 0.50, 0.51, 0.56, and 0.54 respectively in East 

London. These values are just about averaged. Compared with dewpoint in East London, its 

correlation with relative humidity, temperature, cloud cover and water vapour correspond to 

0.89, 0.79, 0.57, and 0.98 respectively. Better results are seen in Mthatha compared to East 

London with regards to correlation between atmospheric variables and rainfall. Most 

atmospheric variable had correlation coefficients exceeding 0.50 except for wind speed which 

corresponded to -0.38. For other atmospheric variables, their correlation with rainfall 

corresponds to 0.678, 0.63, 0.57, 0.73, and 0.70 for dewpoint, relative humidity, temperature, 

cloud cover, and water vapour. In George, similar pattern observed in Alexander Bay, Port 

Elizabeth, and Richards Bay is seen as all atmospheric variables had low correlation with 

rainfall. The coefficients of their correlation with rainfall are 0.10, 0.13, -0.018, 0.25, 0.14, 

0.063 for dewpoint, relative humidity, temperature, cloud cover, water vapour, and wind speed 
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respectively. Relative humidity, temperature, and water vapour all had high correlation with 

dewpoint corresponding to 0.89, 0.79, and 0.98 respectively. 

Table 6. 2: Table showing models evaluation metrics for temperate oceanic without dry 

season climate classification. 

Linear Regression 

 

East London 0.89 1.26 1.12 0.53 0.43 

George 0.61 0.58 0.76 0.03 0.39 

Mthatha 0.90 1.25 1.12 0.72 0.82 

Random Forest 

 

East London 0.92 1.52 1.23 0.59 0.27 

George 0.67 0.90 0.95 0.30 0.07 

Mthatha 1.11 2.44 1.56 0.74 0.51 

Support Vector Machine 

 

East London 0.98 1.70 1.30 0.62 0.19 

George 0.60 0.89 0.95 0.38 0.08 

Mthatha 1.14 2.73 1.65 0.73 0.46 

Ridge and Lasso 

 

East London 0.94 1.55 1.25 0.58 0.40 

George 0.63 0.85 0.92 0.35 0.29 

Mthatha 1.14 2.69 1.64 0.72 0.45 
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Figure 6. 2: Figures showing the predicted and actual rainfall for models used and locations 

under the temperate oceanic without dry season climate classification. 
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6.3 Warm and Dry Summer  

 

The warm and dry summer climate classification is mainly found in the Western Cape Province 

of South Africa. Three locations in this province were selected: Bredasdorp, Cape Town, and 

Clanvilliam. Table 6.3 shows the performance of models using the metrics stated above. 

Random forest, support vector machine, and ridge and lasso had metric values within the same 

range while that of linear regression were completely different. The correlation coefficient in 

linear regression for the three locations were below 0.30, however, the coefficient of 

determination in Bredasdorp was surprisingly high with a value of 0.94. For the remaining 

models, no other location had a R square value higher than 0.40. The models generally 

performed poorly in these locations. The highest correlation coefficient recorded was 0.58 

while using the support vector machine in Clanvilliam, while 0.54 and 0.53 were recorded for 

ridge and lasso and random forest. For Cape Town, correlation coefficients of 0.54, 0.53, 0.49 

were recorded while using the support vector machine, random forest, and ridge and lasso 

models. Cash et al (2023) studied the predictable and unpredictable components of Cape Town 

winter rainfall using datasets from observational and seasonal forecast for their north American 

multi-model ensemble model. Their result showed that rainfall in Cape Town is dominated by 

unpredictable atmospheric variability which results in failure to accurately simulate.  

However, the models could predict the seasonality of rainfall in these locations as seen in figure 

6.3, the models also estimated the amount of rainfall received. Perhaps this was made easier as 

all locations received very little amount of rainfall. Jury (2020) reported that the amount of 

rainfall Cape Town receives has reduced over the years resulting more dry months. With this 

correct estimation and seasonality prediction, these models can be used in predicting future 

estimate of rainfall expected despite the low metrics discussed above. As with other locations, 

the models could not accurately predict the increase in the amount of rainfall received in 2022. 
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Since the evaluation metrics were low, it is not surprising that that the correlation between 

rainfall and other parameters were low. Contrary to most results observed earlier, wind speed 

had the highest correlation with rainfall in Cape Town with a value of 0.54. Other parameters 

such as temperature, cloud clover, relative humidity, dew point, and water vapour had a 

negative correlation with rainfall corresponding to -0.48, -0.45, -0.40, -0.36, -0.2 respectively. 

Jury (2020) reported an increase in easterly winds in Cape Town. This may be responsible for 

the high correlation between wind speed and rainfall in Cape Town compared to other 

locations. Similarly, a negative correlation was recorded between rainfall and dew point, 

relative humidity, temperature, and water vapour in Bredasdorp. Only cloud cover and wind 

speed correlated positively with rainfall with low values of 0.40 and 0.16 respectively. Though 

the atmospheric parameters in Clanvilliam had positive correlation with rainfall except wind 

speed, the coefficients were quite low with water vapour having the highest value of 0.31. 

Therefore, Alexander Bay, Port Elizabeth, Richards Bay and Geroge all show similar pattern 

in their correlation with rainfall with the cities under the warm and dry summer weather 

classification. The reason for this was not explored in this study. 

Table 6. 3: Table showing models evaluation metrics for warm and dry summer climate 

classification. 

Linear Regression 

 

Bredasdorp 0.64 0.66 0.81 0.01 0.94 

Cape Town 0.77 0.91 0.96 0.21 0.58 

Clanvilliam 1.05 1.70 1.31 0.29 0.25 

Random Forest 

 

Bredasdorp 0.53 0.45 0.67 0.41 0.11 
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Cape Town 0.55 0.58 0.76 0.53 0.25 

Clanvilliam 0.29 0.17 0.41 0.53 0.27 

Support Vector Machine 

 

Bredasdorp 0.45 0.41 0.64 0.47 0.20 

Cape Town 0.49 0.57 0.75 0.54 0.27 

Clanvilliam 0.24 0.16 0.41 0.58 0.28 

Ridge and Lasso 

 

Bredasdorp 0.51 0.43 0.66 0.36 0.31 

Cape Town 0.53 0.58 0.76 0.49 0.40 

Clanvilliam 0.28 0.17 0.42 0.54 0.32 
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Figure 6. 3: Figures showing the predicted and actual rainfall for models used and locations 

under the warm and dry summer climate classification. 
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Chapter 7: Rainfall Prediction 

 

7.1 Arid Climate Classification Rainfall Prediction 

 

7.1.1 Cold and Semi-Arid Steppe Rainfall Prediction 

 

This chapter presents monthly rainfall prediction for different climatic zones in South Africa 

for 2024 using random forest model. The prediction was compared to monthly rainfall of 2022 

and 2023 as shown in figure 7.1. Under the cold and semi-arid steppe, in Bloemfontein, the 

figure shows that more rainfall of over 100mm will be received in the first four months of 2024. 

Similar amount of rainfall received in January, March, May, and October is expected in 

Springfontein in 2024. Compared to the previous years, more rainfall is expected in February 

and winter months. While there is an increase in the predicted amount of rainfall in November 

that in 2023, the amount of rainfall in December will be lower than what was experienced in 

2023 and about half of 2022 rainfall. In Springfontein, it is predicted that there will be more 

rainfall in 2024 than 2023 throughout the years, and except for March and June, it is also 

expected that more rainfall will be received than 2024. This is good news for farmers as they 

can plan appropriately as rainfall above 80mm is expected in the last three months of 2024 

while during winter, rainfall of about 40mm is expected monthly. In Welkom, the figure shows 

similar pattern of rainfall to 2023 in 2024 with 2024 expected to receive more rainfall. The 

amount of rainfall expected from February to April is also similar to the amount of rainfall 

Welkom received in 2022. However, more rainfall is expected in the autumn and early spring 

months (June to September) compared to previous years. Although the rainfall expected in 

October will be more than that of 2023, the amount of rainfall expected in November and 

December are similar to that of 2023 and much lower than rainfall in 2022 during summer. For 

the three cities under this climatic zone, more rainfall is expected during autumn in 2024 

compared to other years. While Springfontein predicted that there would be more rainfall 



118 
 

during spring and summer of 2024, similar amounts of rainfall are expected in Bloemfontein 

and Welkom compared to 2023. 
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Figure 7. 1: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the cold 

and semi-arid steppe (Bloemfontein, Springfontein, and Welkom). 

 

7.1.2 Cold Arid Desert Rainfall Prediction 

 

Figure 7.2 shows rainfall prediction for Alexander Bay, Beaufort West, and Bristown under the 

cold arid desert. The amount of rainfall expected in Alexander Bay is more in 2024 compared 

to 2023 for the first two months as there was little or no rainfall those months in 2023, however, 

compared to 2022, rainfall expected in January and February is less than half of what was 

received in 2022. However, in March, similar amount of rainfall is expected as that received in 

2022 and 2023. In April and May, more rainfall is expected in 2024, more than double what 

was received in previous years. While rainfall in Alexander Bay was about 2mm and 4mm for 

April and May of 2022, in 2023, it was about 4mm and 3mm for April and May respectively. 

It is expected that rainfall for those months in 2024 will be about 13mm and 11mm indicating 

that more rainfall in expected in the winter of 2024 compared to other years. However, this 
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rainfall expected in September, October, and December compared to 2023, though this increase 

is negligible. 2024 is therefore expected to be another dry year in Alexander Bay. In Beaufort 

West, 2024 is expected to be another dry. Only in the first three months is rainfall above 50mm 

expected, but all under 80mm. The amount of rainfall received in 2022 January reduced by 

almost half compared to 2023 January. This amount was maintained in 2023 however, it is 

predicted that February 2024 rainfall would be more than that of 2022 and 2023. The amount 

of rainfall expected in February is similar to that expected in March in Beaufort West. 

Compared to other years, this is less than half of what was received in March. Although, there 

was significant decrease from March to April by over 150mm in 2022 and 2023, the decrease 

in 2024 was about 30mm. The amount of rainfall expected in late winter, early autumn, and 

spring, is quite similar to that of 2024. More rainfall is expected is the last three months of the 

year compared to 2023. In Bristown, similar patten of rainfall is seen across the months with 

higher rainfall in the early parts of the year, reduces during winter and autumn, then increases 

late spring to early summer. It is predicted that over 100mm monthly rainfall will be received 

in 2024 from January to April, an increase from 2023 with no month receiving up to 75mm 

except in December. Compared with 2022 with high rainfall received, only in January, March 

May, September, and December did 2022 received more rainfall than what is predicted for 

2024. The total amount of rainfall expected in 2024 is similar to the amount of rainfall received 

in 2022 which is almost twice the amount of rainfall received in 2023. That means, it is 

expected that 2024 rainfall in Bristown doubles the amount of rainfall received in 2023. Also, 

in 2024, more rainfall is expected during later winter and early autumn compared to other years. 

January, April, and December are expected to receive the hight amount of rainfall in 2024 in 

Bristown. 



121 
 

 

 

0

5

10

15

20

25

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
a

in
fa

ll
  

(m
m

)

Months

Alexander Bay

2022 2023 2024

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
a

in
fa

ll
  

(m
m

)

Months

Beaufort West

2022 2023 2024

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
a

in
fa

ll
  

(m
m

)

Months

Bristown

2022 2023 2024



122 
 

Figure 7. 2: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the cold 

arid desert (Alexander Bay, Beaufort West, and Bristown). 

7.1.3 Hot and Semi-Arid Steppe Rainfall Prediction 

 

Figure 7.3 shows the rainfall prediction for 2024 compared to 2022 and 2023 rainfall for 

Kimberly, Mahikeng, and Port Elizabeth under the hot and semi-arid steppe climate 

classification. In Kimberly, the figure shows that it is expected to receive about 20mm more 

rainfall more in January than what was received in 2023 January and 10mm less what was 

received 2022 January. However, more rainfall is expected in February. There was an increase 

in rainfall by about 25mm in February rainfall in 2022 and 2023, this estimated increase is 

predicted for February 2023. In March, similar amount of rainfall compared to 2023 is expected 

in Kimberly in 2024 with little reduction in April. However, estimated rainfall for April 2024 

will be about three times what was experienced in April 2023 and about 30mm lower than 2022 

April. Compared to May 2022 and May 2023, lower rainfall is expected in Kimberly in 2024. 

From autumn (June) to early spring (September), more rainfall is expected in 2024 although, 

monthly estimates are below 35mm during this period. It is predicted that there will be gradual 

increase in the amount of rainfall expected till the end of the year. The predicted values are 

higher than the amount of rainfall Kimberly received in 2023 except from December but lower 

than 2022 rainfall. It is also predicted that there will be an annual increase of about 200mm in 

2024 rainfall compared to 2023, however, this is still about 250mm lower than 2022 rainfall. 

In 2022, Mahikeng received rainfall of over 150mm in January, April, November, and 

December while in 2023, in February, the amount of rainfall Mahikeng received is estimated 

to be over 270mm. However, in 2024, only in January, April, and December are the predicted 

monthly estimate above 100mm. There is an increase by about 60mm in January rainfall 

between 2023 and predicted 2024 values but about 200mm difference in February. The amount 

of rainfall predicted for March though lower in 2024 is quite similar to that of 2023. In April, 
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Mahikeng received about 200mm rainfall in 2022, about 70mm in 2023 and predicted estimate 

of over 110mm in 2024. Similar values in May are seen in both 2023 and 2024 estimates. 

Similar to Kimberly, there is expected to be more rainfall in autumn and early spring compared 

to other moths and then a gradual increase in 2024 rainfall till the end of the year. It is also 

predicted that the amount of rainfall in November and December will be similar to 2023 rainfall 

in those months. Predicted annual rainfall in 2024 is within the same range as that of 2023 but 

much lower than the amount of rainfall received in 2022 in Mahikeng. 

In Port Elizabeth, more rainfall is predicted for 2024 for middle to late spring and summer 

months compared to 2023. Among all locations, this is the first city that has predicted more 

rainfall in 2024 than what was received both in 2022 and 2023. In January 2022, Port Elizabeth 

received about 20mm rainfall which increased to 70mm in January 2023, January 2024 

estimates are predicted to be over 100mm. Similarly for February, it is expected that there will 

be more rainfall compared to 2022 and 2023. However, lesser rainfall is predicted for March 

compared with the previous two years. The amount of rainfall expected in April is more than 

twice what was experienced in 2022 and 2023. From May to September, except for August, it 

is predicted that lesser rainfall will be experienced compared to 2023. For October and 

November, rainfall estimates for 2024 will be at least thrice what was received in 2022 and 

2023 while that of December will be similar to the amount of rainfall received December 2022. 
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Figure 7. 3: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the hot 

and semi-arid desert (Kimberly, Mahikeng, and Port Elizabeth). 

7.1.4 Hot arid desert Rainfall Prediction 

 

In Lauville, there is a predicted decrease of about 450mm in the amount of rainfall expected in 

2024 compared to 2022 and 2023 rainfall. Therefore, with monthly rainfall from January to 

April 2024 around 100mm, it is suggested that proper planning be made especially for those 

into farming to mitigate the shortage of water. Although similar amount of rainfall is observed 

from the graph as shown in figure 7.4 for 2023 and 2024, the most significant change can be 

seen in the last three months of the year where expected rainfall in 2024 is less than half the 

amount received in 2023. 

Contrary to Lauville, the amount of rainfall estimated for 2024 in Musina is more than the 

amount received in 2023 while the predicted rainfall for 2024 in Upington is more than twice 

the amount received in 2023. In 2023, Musina received significant amount of rainfall in 

January, February, and December with February and December rainfall over 200mm. While 

Musina have only few months of rainfall above 100mm as predicted, the amount of rainfall 

expected is well spread compared to other months. While there was almost drought between 

May and September of 2022 and 2023, monthly rainfall of about 40mm is expected during this 

period in 2024 which will gradually increase to over 110mm by the end of the year. In Upington 

as shown in figure 7.4, only in January, February, March, and December did it receive rainfall 

above 40mm in 2023. 2023 rainfall in other months were insignificant. Though there was more 

rainfall in 2022 compared to 2023, only in March does the 2022 rainfall exceed the predicted 

rainfall for 2024. Similar amount of rainfall in January, February, May, June, and December 

2022 is predicted in 2024. 
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Figure 7. 4: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the hot 

arid desert (Lauville, Musina, and Upington). 

7.2 Subtropical Wet Rainfall Prediction 

 

7.2.1 Humid Subtropical with Dry Winter Rainfall Prediction 

 

Figure 7.5 shows the predicted rainfall for 2024 compared with rainfall received in 2022 and 

2023 in Dundee, Louis Trichardt, and Nelspruit. In Dundee, there is an observed decrease in 

rainfall received in January 2022 and January 2023 by about 20mm, and further decrease by 

20mm in the estimated values of January 2024. However, in February, the amount of rainfall 

predicted for 2024 is similar to rainfall received in 2022 and about 80mm lesser than the 

February rainfall of 2023. It is predicted that there will be more rainfall in March 2024 

compared to previous years. It is also predicted that the rainfall expected in April will be thrice 

the amount of rainfall received in 2023 April but less than that of 2022. However, in May, the 

amount of rainfall received in the past two years and predicted rainfall for 2024 are similar. 

Between June and September, it is predicted that there will be more rainfall that the same period 

combined in 2022 and 2023. From mid-spring to December, it is predicted that there will be 

lesser rainfall in 2024 compared to previous years. The amount of rain expected in November 

is less than half what was received in the past two years and the amount expected in December 

will be about 60mm lower than what was received in 2023 and 100mm lower than December 

2022 rainfall. Summarily, it is predicted that there would be lower rainfall in 2024 compared 

to 2022 and 2023 despite having more rainfall in the autumn of 2024. 

In Louis Trichardt, it is predicted that the annual rainfall of 2024 would be more than those of 

2022 and 2023. In 2023, significant months of rainfall were January, February, and December 

all receiving rainfall above 100mm while March, October, and November received about 

40mm rainfall. In 2022, significant amount of rainfall was received in March, April, November, 
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and December while in 2023, it is predicted that the first four months and the last three months 

will experience significant amount of rainfall. It is also predicted that there will not be any dry 

month in 2024 compared to other years. predicted rainfall for winter months would be about 

40mm. However, despite 2024 having more rainfall than the previous two years, the predicted 

monthly rainfall would still be lower than the months of heavy rainfall in 2022 and 2023. For 

instance, February 2023, about 250mm rainfall was received while the predicted rainfall for 

2024 would be about 100mm, although the amount of rainfall received January 2023 and 

predicted January 2024 are similar. The amount of rainfall expected In March, April, October, 

and November are also similar to the amount received in 2022 during these months. 

The amount of rainfall expected in 2024 is similar to the annual rainfall of 2022 in Nelspruit 

and lower than 2023 rainfall. In January 2024, it is predicted that there will be more rain 

compared to January of 2022 and 2023 by about 30mm. 2023 had months of heavy rain like 

February, November, and December where rainfall exceeded 200mm and even 250mm in 

November. Also, in 2022, rainfall in November and December were above 150mm, however, 

in 2024, months with heavy rainfall would receive only about 100mm rainfall. These months 

are January, April, and November, although significant amount of rainfall is predicted for 

February, March, and November. It is also predicted that there will be more rainfall for 2024 

winter and early spring compared to 2022 and 2023. 
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Figure 7. 5: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the 

humid subtropical with dry winter (Dundee, Louis Trichardt, and Nelspruit). 

7.2.2 Subtropical Highland with Dry Winter Rainfall Prediction 

 

Figure 7.6 shows the predicted rainfall for 2024 for the subtropical highland with dry winter 

and compared with 2022 and 2023 results for Harrismith, Johannesburg, and Newcastle. The 

result shows that there was more rainfall in 2022 than in 2023 and what is predicted for 2024, 

although 2024 estimates are higher than 2023 for Harrismith. In 2022, there were five months 

with monthly rainfall above 150mm (January, April, October, November, and December) with 

February and March also experiencing high rainfall. Compared to 2023, rainfall above 100mm 

were only received in January, November, and December. While only January, April, and 

December of 2024 are predicted to have rainfall above 100mm, other months are predicted to 

equally have high amount of rain. Between January 2022 and January 2023, there is a decrease 

of about 30mm in rain received, a further decrease of about 20mm is predicted for January 

2024. The predicted amount of rain for February and March are within 20mm of what was 

received both in 2022 and 2023 with 2024 predicted to have more rain. It is also predicted that 

there will be more rain in April of 2024 by about 50mm to what was received April 2023, but 

lower than the amount of rainfall received in 2022 in Harrismith. In May, a decrease of about 

10mm is predicted while compared to 2023 rainfall. However, more rainfall is predicted for 

2024 from June to September. Though this climatic zone is dry winter, it is predicted that there 

would be more rain during winter than previous years. It is also predicted that there would be 

a gradual increase in 2024 rainfall from September till the end of the year, however, it would 

still be lower than 2022 and 2023 rainfall. 

In the commercial city of Johannesburg, the total amount of rainfall predicted for 2024 would 

be a little lower than the annual rainfall of 2023 and much lower than the annual rainfall of 

2022. Similar to Harrismith, Johannesburg had five months of rain above 150mm in 2022 
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(January, February, April, November, and December) while there were four months of rain 

above 100mm in 2023 (February, May, November, and December). This reduced to three 

months in the predicted rainfall for 2024 (January, April, and December). This reveals that 

more rain should be expected in the early and late months of the year with varying intensity. 

Compared to 2024, in the first five months of the year, only in January and April will the 

predicted rainfall be more than that of 2023 while compared with 2022, 2024 predicted rainfall 

will only be higher in March and May. A monthly average of 100mm rainfall is predicted for 

the first four months of 2024. It is also predicted that there will be more rain in winter and early 

spring compared to other years. the predicted amount of rainfall for the last two months of 2024 

is much lower than rainfall of 2023 and 2022 during this period. 

Newcastle also had four months (April, October, November, and December) of rainfall above 

150mm with rainfall in two of those months exceeding 200mm (October and December) in 

2022. In 2023 rainfall over 150mm were recorded only in February and November with 

December equally having high amount of rainfall. In 2024, none of the months is predicted to 

have rainfall of over 150mm with only three months (January, April, and December) having 

rainfall above 100mm. Predicted rain for January 2024 is similar to what was received both in 

2022 and 2023 while that of February is similar to 2022 February rainfall and much lower than 

2023 February rainfall. While for March, predicted rainfall is about twice what was received 

in the previous two years. Similarly for April, predicted rainfall is more than twice what was 

received in 2023 though lower than 2022 April rainfall while the predicted rainfall for May is 

within the same range as what was recorded in 2022 and 2023. As with other cities under the 

dry winter climatic zone, more rainfall is expected in 2024 compared to other years. Rainfall 

predicted for October is similar to 2023 October rainfall but much lower than that of 2023. 

However, for the last two months of the year, lesser rainfall is predicted compared to these 
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months in 2022 and 2023 with November receiving about half the amount of rainfall recorded 

in 2022 and 2023. 
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Figure 7. 6: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the 

subtropical highland with dry winter (Harrismith, Johannesburg, and Newcastle). 

 

7.3 Subtropical dry Rainfall Prediction 

 

7.3.1 Humid subtropical without dry season Rainfall Prediction 

 

In figure 7.7, 2024 rainfall prediction with 2022 and 2023 rainfall is shown for Durban, Port 

Edward, and Richards Bay under the humid subtropical without dry season. These locations 

were the primary motivation for this study due to the flooding that occurred April 2022. Parts 

of KwaZulu natal province including Durban and Richards Bay and Port Edward in Eastern 

Cape received rainfall above expected average which led to the loss of lives, destruction of 

properties and infrastructures. As seen in the three figures in figure 7.7, all through the year, 

there is no dry season as rain is expected to fall with varying degrees of intensity. In Durban, 

predicted rainfall in January and February is about 20mm lower than 2023 rainfall but higher 

than 2022 rainfall in those months. However, in March, both the predicted rainfall and 

previously recorded rainfalls of 2022 and 2023 fall within the same range. As mentioned earlier 

in the study, April 2022 received an unusual amount of rainfall. Durban received almost 350mm 

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
a

in
fa

ll
  

(m
m

)

Months

Newcastle

2022 2023 2024



134 
 

of rain with most of them happening 11th and 12th April. This is responsible for the high 

rainfall profile in April as seen in the graph. December 2022 also received high rainfall, 

although it was more spread across the days compared to what happened in April. In 2023 

April, rainfall received in Durban drastically reduced to about 70mm, it is predicted that this 

will increase in 2024 to over 110mm but will experience a decrease to about 50mm in May. 

The predicted rainfall for winter and early spring compared with those of 2022 and 2023 are 

within the same range. Therefore, the same amount of rainfall experienced and recorded in 

Durban in 2022 and 2023 winter and early spring should be expected in 2024. However, from 

October to December 2024, predicted rainfall is less than half what was recorded in 2023. This 

means that lesser rainfall should be expected towards the end of the year. 

In Port Edward, 2024 rainfall predicted is within the same range as rainfall recorded in 2022 

January and February. This was lower than 2023 January rainfall and more than 2023 February 

rainfall. In March, the predicted rainfall is about 40mm lower than what was recorded in 2022 

and 2023. As with other cities under this climatic condition, 2022 April rainfall was about 

300mm compared to 60mm recorded in 2023. It is predicted that there would be an increase by 

about 50mm in April rainfall from 2023. May predicted rainfall is about 20mm lower than 

rainfall recorded in 2022 and 2023. Similar to Durban, predicted 2024 rainfall and recorded 

rainfall for 2022 and 2023 during winter months are similar. Although rain would still be 

expected to fall, the intensity would be low. There was still high rainfall recorded in the spring 

of 2022 and December which is also predicted for 2024, but at lower amount. The amount of 

rain expected in September and October is less than a third of what was recorded during these 

months in 2022 and less than half of what was recorded in 2023 November is predicted for 

2024 April. However, similar amount of rainfall should be expected in December of 2024 with 

December of 2023. 
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In Richards Bay, much rainfall was received in January, April, October, November, and 

December of 2022 with four months (April, October, November, and December) receiving over 

200mm of rain. In 2023, there were five months (February, May, October, November, and 

December) that received rainfall exceeding 150mm. However, in 2024, it is predicted that only 

in January, April, and December will monthly rainfall exceed 100mm. This is reflected in the 

amount of annual rainfall expected which is over 300mm lower than the annual rainfall of 2023 

and over 500mm lower than the average rainfall of 2022. Despite 2024 being predicted to have 

lower amounts of rainfall compared with the previous years, significant amount of rain is 

expected in the first four months of 2024 with March rainfall exceeding those of March 2022 

and March 2023. It is also predicted that there will be more rain in April compared to 2023 

April. The figure also shows that there would be rain during winter months which will gradually 

increase till the end of the year. Rainfall for October, November, and December is predicted to 

be at least 80mm lower than that of 2023 and 130mm lower than that of 2022. 
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Figure 7. 7: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the 

humid subtropical without dry season (Durban, Port Edward, and Richards Bay). 

7.3.2 Temperate oceanic without dry season rainfall prediction 

 

Rainfall prediction for the temperate oceanic without dry season (East London, George, and 

Mthatha) for 2024 compared with rainfall values for 2022 and 2023 is shown in figure 7.8. The 

first figure in figure 7.8 shows that while a steady increase in the amount of rainfall received 

in 2022 for the first three months is observed, in 2024, there is a slight decrease of less than 

5mm between January and March. In 2023, there was a decrease by about 40mm between 

January and February and an increase of about 80mm between February and March. In April, 
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the predicted values are within the same range with 2022 rainfall and thrice 2023 rainfall. 

Though there is no dry season in this climatic region, the amount of rainfall predicted and 

recorded for previous years reduced during winter months compared to other months. It is also 

seen in the graph that there would be lesser amount of rainfall between May and July in 2024 

compared to 2023 as well as in September and October. The result also reveals that the annual 

average rainfall for 2024 will be lower than that of 2023 and much lower than 2022 annual 

rainfall.  

However, in Geroge, there is an increase of about 200mm between 2022 annual rainfall and 

2023 annual rainfall. Further 200mm increase rainfall is predicted between 2023 and 2024. 

This is an exciting news for a region that has been known to receive little amount of rainfall 

over the years. Predicted January rainfall is about four times what was recorded in 2022 and 

2023. Also, predicted rainfall for February is about four times that of 2023 and about 20mm 

more than 2022 February rainfall in George. However, in March, there would lower rainfall 

compared to other years and about 100mm lower than 2023 March rainfall. This would be 

compensated in April as it is predicted that 2024 April rainfall would be about 90mm more than 

what was recorded in 2023 and 100mm more than 2022 April rainfall. Though for this climatic 

zone, there is no dry season, the result shows that in five months (April, July, August, October, 

and November) of 2022, rainfall was below 20mm with July receiving about 5mm the entire 

month. August 2023 also received rainfall below 10mm. it is expected that this value will rise 

to about 40mm in 2024. Finally, the results in George indicate that there would be more rainfall 

between October and December than what was recorded in 2022 and 2023 by a wide margin. 

While in George, there was an increase of about 200mm from 2022 to 2023 and from 2023 to 

2024, in Mthatha, the reverse is the case. There was an annual decrease of about 250mm from 

2022 rainfall to 2023 rainfall. It is predicted that there would be a further decrease by about 

300mm between 2023 rainfall and 2024 rainfall. As with this climatic zone, there was no dry 
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season as rainfall was experienced and predicted during the winter season. It is predicted that 

January 2024 rainfall would be about half of what was recorded in 2023 as well as in March 

and May. February rainfall would be about 10mm more than 2023 February rainfall but 10mm 

lower than 2022 February rainfall. It is also predicted that there would be more rainfall in April 

2024 by about 20mm compared to 2023 April. Between June and August, rainfall prediction 

for 2024 and recorded values for 2022 and 2023 are within the same range. Compared to 2023, 

lower rainfall is predicted in September and November while in October and December, the 

amount of rainfall expected would be similar to that of 2023. 
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Figure 7. 8: Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the 

temperate oceanic without dry season (East London, George, and Mthatha). 

7.3.3 Warm and dry summer 

 

For the warm and dry summer, rainfall prediction for 2024 compared with recorded values of 

2022 and 2023 is presented in figure 7.9. In Bredasdorp it is shown that there was little rainfall 

in summer months of December and January of 2023 while low rainfall was recorded in April 

and November of 2022. In the predicted values of rainfall, it is estimated that there would be 

much more rainfall from October to December than the previous years. Similarly, more rainfall 

is predicted in 2024 for January, February, and April than the previous years. it is predicted that 

the rain in March would be considerably lower than that of 2023 by almost 200mm while 

predicted rainfall for June 2024 would be about 100mm lower than the amount of rain received 

in 2023. Similar amount of rainfall to that of 2023 May and July is predicted for 2024. 

In Cape Town, dry summer was only experienced in 2023 among the three years with 2022 

December receiving considerable amount of rainfall. Most rainfall recorded in Cape Town in 

2023 was during autumn, early winter, and early spring. In January 2023, less than 5mm rainfall 

was received compared to a predicted value of about 100mm in 2024 January. Similarly for 

February, the predicted value is about five times what it was in 2023 February. In March, from 
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year to year, there is a steady increase in the amount of rainfall received from 2022 to 2024 

although 2022 rainfall in March was much lower than in 2023 and 2024. This pattern is also 

seen in April with 2023 and 2024 values closer than what was obtained in 2024. While there 

was an increase in rain from April to June for both 2023 and 2024, the predicted values in 2024 

is expected to reduce during this period. Predicted values in July for 2024 and recorded rainfall 

values for 2022 and 2023 are quite similar. The observed increase in 2022 rainfall from October 

to December can also be seen in the predicted values for 2024 while in 2023, there was a 

decrease in these months. 

In Clanvilliam, significant amount of rainfall was recorded in 2022 in January, February, 

March, June, and December. Despite it being dry summer, in 2023, it was mostly a dry year 

with monthly rainfall below 20mm recorded in nine months (January, February, May, July, 

August, September, October, November, and December). In 2022, seven months recorded 

rainfall below 20mm (April, May, July, August, September, October, and November). In the 

predicted rainfall estimates of 2024, only four months (May, June, July, and August) are 

expected to have rainfall values below 40mm. While in 2023, only April had monthly rainfall 

of over 40mm recorded, in 2022, there was rainfall of about 130mm recorded in March and 

June. The predicted values of 2024 shows that rainfall of over 90mm is expected in five months 

(January, February, March, April, and December). 
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Figure 7. 9:Rainfall prediction for 2024 compared with 2023 and 2023 rainfall under the 

warm and dry summer (Bredasdorp, Cape Town, and Clanvilliam). 
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Chapter 8 

 

8.0 Conclusion, Recommendations and Future Direction 

 

8.1 Conclusion 

 

This research work forms a foundation for future weather prediction in South Africa using 

machine learning models as it investigates the performance of four machine learning models 

over different climatic zones in South Africa. The machine learning models used for this study 

are linear regression, random forest, support vector machines, and ridge and lasso regression. 

Based on the Koppen-Geiger climate classification system, South Africa was divided into three 

groups and further subdivided. The broad three climatic zones are the arid, subtropical wet, and 

subtropical dry climate classification. The arid climate classification was further divided into 

four, the cold and semi-arid steppe, cold arid desert, hot and semi-arid steppe, and the hot arid 

desert. For each category, three locations were selected to test four machine learning models. 

The purpose of this is to determine if the same model can be used for rainfall prediction within 

the same climatic zone. These models were selected as they have shown to be accurate in 

rainfall prediction when tested in other regions of the world. However, much work had not 

been done in southern Africa and South Africa on prediction of atmospheric variables using 

machine learning methods.  

The cold and semi-arid steppe climate is mainly found in the Free State Province, therefore, all 

three locations, Bloemfontein, Springfontein and Welkom are in the Free State Province. The 

result showed that either linear regression or support vector machines can be used to accurately 

predict the seasonality and estimate the amount of rainfall received in the cold and semi-arid 

steppe climate classification. Random forest and ridge and lasso also performed well in 

Springfontein and Welkom. Cold arid desert is majorly found in the western part of South 

Africa. locations selected are Alexander Bay and Bristown in the Northern Cape Province, and 
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Beaufort West in the Western Cape Province. All models performed poorly in Alexander Bay, 

in the prediction of rainfall. The reason for the poor performance could not be established in 

this study, however, all other models performed well in Beaufort West and Bristown. It is 

however suggested that either the support vector machine or ridge and lasso be used in Beaufort 

West. Hot and semi-arid climate classification was found in three provinces, Kimberly in the 

Northern Cape Province, Mahikeng in North-west Province, and Port Elizabeth in the Eastern 

Cape Province. In this climatic zone, all models performed poorly in predicting Port Elizabeth’s 

rainfall while they all performed excellently in forecasting rainfall in Kimberly and Mahikeng. 

This study suggests that any of the model can be used for future work in the hot and semi-arid 

climate. Towards the northern part of South Africa is the hot arid desert. Locations selected for 

this study are Lauville in Mpumalanga Province, Musina in Limpopo province and Upington 

in Northern Cape province. The performance of the models in the hot arid desert was not as 

good compared to other regions in the arid classification except in Musina where the models 

performed well especially the support vector machine and random forest. Although other 

models still effectively predicted rainfall, the support vector machine is suggested to be used 

in other locations. 

The subtropical wet climate classification was identified with dry winter. This was sub-divided 

into two, the humid subtropical highland with dry winter and the humid highland with dry 

winter. Dundee in KwaZulu Natal Province, Louis Trichardt in Limpopo Province, and 

Nelspruit in Mpumalanga Province were selected for the humid subtropical while Harrismith 

in the Free State Province, Johannesburg in Gauteng Province, and Newcastle in KwaZulu 

Natal Province were selected for the subtropical highlands. The regions of the subtropical 

highland are around the central part of South Africa. The support vector machine performed 

best in Louis Trichardt and Nelspruit while random forest performed best in Dundee. All four 

models can be used for rainfall prediction as they all had high predictive performance in the 
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three locations under the humid subtropical highland. The performance of all models in 

Johannesburg was not too accurate. In regions where the model performance is not good 

enough, it is suggested that other atmospheric variables be considered such as different cloud 

properties. The performance of all models to predict rainfall were high in both Harrismith and 

Newcastle, therefore, any of the models can be used for future work. 

For the third climate classification, Durban and Richards Bay from KwaZulu Natal Province, 

Port Edward from the Eastern Cape Province were selected for the humid subtropical without 

dry season while East London and Mthatha in Eastern Cape Province and George in Western 

Cape Province were selected for the temperate oceanic without dry season. The temperate 

oceanic without dry season is mostly found in the southern part of South Africa. The final 

classification under the subtropical dry is the warm and dry summer and locations selected are 

Bredasdorp, Cape Town, and Clanvilliam all in the Western Cape Province. The performance 

of the models in the humid subtropical was not too good except in Port Edwards, although 

results in Durban using ridge and lasso was better compared to other models. Model 

performance in Richards Bay was not good enough as with George in the temperate oceanic. 

Random forest performed best in Mthatha closely followed by the support vector machine 

while linear regression and ridge and lasso also performed well in Mthatha. In East London, 

support vector machine performed best closely followed by random forest then, ridge and lasso 

regression. The performance of the model in the warm and dry summer was also poor. This 

may be attributed to the amount of zonal wind and unpredictable atmospheric variability in this 

region. Also, the models’ performance was not too great in regions where there is little rainfall 

or pronounced drought seasons. 

In addition, the results showed that for rainfall prediction, cloud cover, dew point and water 

vapour had high correlation with rainfall. It is suggested that for future modelling and 

predictions, these atmospheric variables should be included to increase the performance of the 
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models. Wind speed, temperature, and relative humidity only had strong impact on rainfall 

prediction is few locations. 

Finally, using the random forest model, 2024 monthly rainfall was predicted for all 27 locations 

and compared with values obtained from 2022 and 2023. In some locations, it is expected that 

there would be more rainfall in 2024 compared to previous years while in some locations, lesser 

amount of rainfall was predicted. Where there would be more rainfall, it is good news for 

farmers, while in regions where lower rainfall were predicted, farmers need to look for 

alternative ways to combat the foreseeable challenges with low rainfall. 

8.2 Recommendations 

 

This work recommends the use of machine learning models for future studies in South Africa 

for all climatic zones. 

This work also recommends that, in areas susceptible to drought and low annual rainfall, other 

atmospheric variables, especially cloud properties be explored for rainfall prediction and 

estimation.  

For accurate prediction, dew point, cloud cover, and water vapour are important atmospheric 

variables that must be considered which will improve the accuracy of the models. However, in 

Cape Town, wind speed should be included in the atmospheric variables. 

Government and organizations should look more into the results of this study to discover areas 

that were predicted to have both more and less rainfall and appropriate actions should be taken 

to avoid its adverse effect on the people. 
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8.3 Future Direction 

 

Although predictions have been made for twenty-seven cities in South Africa, the prediction 

was done on monthly basis. This work can be extended by predicting daily rainfall as this will 

help guide more in decision making. 

The reason for the low correlation between rainfall and other atmospheric variables in 

Alexander Bay, Port Elizabeth, Richards Bay, George, and the three locations under the warm 

and dry summer, Bredasdorp, Cape Town and Clanvilliam needs to be explored. 

While machine learning models have proved to be useful, accurate and reliable in rainfall 

predictions, the potential of deep learning models such as long-short term memory has also 

been demonstrated as well as ensemble methods. In the future, deep learning models as well as 

a combination of different machine learning models would be used to daily rainfall prediction 

and compare their performance and potential advantages over traditional machine learning 

models. 

Also, since Africa is lagging in the use of machine learning models for rainfall prediction, this 

work will be expanded to Southern African countries and Africa at large to help mitigate the 

impact of drought and enhance water resource management. 

8.4 Limitations of the Study 

 

This study was carried out in 27 cities located in different climatic zones using four machine 

learning models. Since only four models were examined, there is the possibility that better 

models may be adaptable to South Africa. Also, despite the 27 cities in the nine climatic zones 

in South Africa selected, many other cities were not included in the study. 
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Appendix A 

 

Heat map of the correlation between rainfall and atmospheric variables for various locations 
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