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Abstract

Bayesian additive regression tree (BART) is a recent statistical method
that blends ensemble learning with nonparametric regression. BART
is constructed using a Bayesian approach, which provides the benefit
of model-based prediction uncertainty, enhancing the reliability of pre-
dictions. This study proposes the development of a BART model with
a binomial likelihood to predict the percentage of students retained in
tutorial classes using attendance data. The proposed model is evalu-
ated and benchmarked against the Random Forest Regressor (RFR). The
proposed BART model reported an average of 20% higher predictive
performance compared to RFR across five error metrics, achieving an R-
squared score of 0.9414. Furthermore, the study demonstrates the utility
of the Highest Density Interval provided by the BART model, which can
help in determining the best and worst-case scenarios for student reten-
tion rate estimates. The significance of this study extends to multiple
stakeholders within the educational sector. Educational institutions, ad-
ministrators, and policymakers can benefit from this study by gaining
insights into how future tutorship programme student retention rates
can be predicted using predictive models. Moreover, the foresight pro-
vided by the predicted student retention rates can aid in strategic re-
source allocation, facilitating more informed planning and budgeting
for tutorship programmes.

Keywords: Student retention, Tutorship programme, Attendance, Educational data
analytics, Bayesian, Regression, Ensemble
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Chapter 1

Introduction

In today’s higher education landscape, retaining students has emerged as a sig-
nificant challenge. Statistics reveal that nearly 40% of students are not retained
within their academic institutions or classes over time, indicating the urgency of
addressing this issue [32]. Consequently, educators and researchers have under-
taken numerous studies to explore innovative approaches to student retention. One
approach that has gained significant attention is data analytics. Educational insti-
tutions have begun recognizing the potential of data analytic solutions in ensuring
student success and retention [36]. Student retention, in this context, is defined as
the percentage of students who re-enroll from one academic year to the next [32].
The term data analytics refers to the systematic examination of raw data within a
specific context to uncover meaningful patterns, correlations, and trends that can
be translated into actionable insights [26]. The application of data analytics in the
education domain is referred to as educational data analytics [26].

Recent studies demonstrate that higher education institutions that develop pre-
dictive and diagnostic analytical solutions to address student retention can benefit
from enhanced reputation, better ranking, and financial stability [9, 26, 35]. As low
retention rates negatively impact an institution’s financial and institutional stability
[9, 28], exhibiting the need for educational institutions to develop and implement
effective data analytic strategies to improve student retention rates.

While existing work in educational data analytics has primarily focused on the
development of predictive models, such as logistic regression, support vector ma-
chines, random forest, and decision trees, for the purpose of predicting student
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retention, a notable gap exists in the consideration of student retention as a multi-
faceted problem [3, 9, 32]. Student retention encompasses more than just predicting
whether a student can be retained from one year to the next; it also extends to vari-
ous programmes offered by institutions, including tutorship programmes (TPs).

TPs have become an essential part of higher educational institutions as they pro-
vide a supportive environment for students to improve their academic performance
[38]. TPs offer personalized attention, access to resources, and mentorship oppor-
tunities, which can enhance students’ understanding of complex concepts and help
develop their study skills [38]. Moreover, TPs can increase students’ confidence in
their abilities, leading to improved academic and personal outcomes [38]. How-
ever, to ensure the effectiveness of tutorship programmes, it is crucial to ensure
retention in tutorial classes. This study defines student retention in tutorial classes
as the percentage of students retained in tutorial classes over a specified period.
High retention rates in TPs not only ensure that students continue to benefit from
personalized instruction and support but also help to improve graduation rates [7].
In this way, TPs play a critical role in improving student success and supporting
their academic and personal development [7].

Despite the progress made in using educational data analytics to tackle student
retention, gaps in literature persist. One significant gap pertains to the absence of
predictive models in education that can offer reliable predictions using uncertainty
quantification approaches [5]. The current predictive models used in studies lack
probabilistic information, which leads to overly confident or incomplete decision-
making. Uncertainty quantification provides a framework for estimating and inte-
grating probabilistic information into predictive models [27]. By disregarding un-
certainty, these studies fail to assess the confidence associated with predictions. Un-
certainty information is crucial for decision-making and risk assessment. Ignoring
uncertainty can result in incomplete or deceptive decision-making [24]. Decision-
makers in education need not only point predictions but also a measure of certainty
in those predictions. Neglecting uncertainty may result in underestimating risks,
overestimating benefits, or making suboptimal choices [24].

To address these gaps, this study proposes the adoption of a Bayesian approach
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to model and predict attendance-based retention in tutorial classes. Bayesian mod-
els, grounded in probability theory, provide a statistical framework for making pre-
dictions and decisions [18]. Notably, Bayesian models offer several benefits over
traditional predictive models such as logistic regression, support vector machines,
random forest, and decision trees. These benefits include the ability to incorporate
prior information, quantify uncertainty and handle limited data [24].

1.1 Problem Statement

The study is designed to bridge a theoretical gap and solve a practical problem in
the education data analytics domain. Firstly, it aims to fill the scholarly void sur-
rounding the application of a Bayesian approach with uncertainty quantification
in the education domain, which has received limited attention thus far [5]. This
prompts the need to empirically examine how a Bayesian approach can reliably
predict and offer actionable insights into the student retention problem.

Secondly, the study seeks to contribute towards resolving a practical problem faced
by the Centre for Teaching, Learning, and Programme Development (CTLPD) at Sol
Plaatje University (SPU). Currently, the CTLPD lacks an effective decision-making
and resource allocation model for its tutorship programme, resulting in inefficien-
cies and potential costs. To address this issue, this study explores the implemen-
tation of a Bayesian model that will enable the CTLPD to reliably predict future
retention rates in tutorial classes and proactively identify opportunities for inter-
vention to improve retention rates.
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1.2 Research Questions

• RQ1: To what extent does the performance of a Bayesian model differ from
that of a non-Bayesian model in terms of predicting retention in tutorial classes,
as evaluated using metrics including minimum error, maximum error, mean
absolute error, median absolute error, root mean squared error, and coefficient
of determination?

• RQ2: How can the highest density interval be used to summarize the uncer-
tainty in retention predictions and make inferences about retention in tutorial
classes?

1.3 Research Aims and Objectives

1.3.1 Research Aim

To develop a Bayesian model to predict attendance-based retention in tutorial classes.

1.3.2 Objectives

In line with the aim of this study, the following objectives drive this study:

• Develop a Bayesian model using attendance data from tutorship programmes
to predict retention in tutorial classes.

• Compare the performance of a Bayesian and non-Bayesian model in predict-
ing retention in tutorial classes based on the minimum error, maximum error,
mean absolute error, median absolute error, root mean squared error, and co-
efficient of determination.

• Use the highest density interval to summarize the uncertainty in retention
predictions and draw inferences about retention in tutorial classes.
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1.4 Scope and Limitations

The primary focus of this study is to offer a fresh perspective on the student re-
tention problem by highlighting its potential existence within student support pro-
grammes. These programmes are designed as interventions to enhance student suc-
cess, with retention being a pivotal factor for students to derive maximum benefit
from such initiatives. However, it is imperative to acknowledge a noteworthy limi-
tation in the scope of this work, as it exclusively examines student retention through
the lens of a singular student support programme, namely a tutorship programme.
The data used for data analysis and modeling is derived solely from tutorial class
attendance data at Sol Plaatje University.

Despite this limitation, the methodology employed in this study underscores the
importance of two key variables – student numbers for attendance tracking and
programme attendance dates. These variables are identified as critical components
for implementing the proposed predictive models for student retention. Impor-
tantly, any educational institution equipped with the capability to collect these two
essential variables stands to benefit substantially from the methodology outlined in
this study.

While the specific focus on a tutorship programme within a single institution im-
poses a limitation on the study’s external validity, the identified crucial variables
make the proposed methods applicable and beneficial to educational institutions
that have the capacity to collect comparable attendance data.

1.5 Layout of Chapters

• Chapter 2 – The literature review chapter comprehensively delves into the
three primary themes underpinning this study: educational data analytics,
Bayesian modelling, and predictive analytics for modelling student reten-
tion. The various types of data analytics within the education domain are
explained, supported by examples, highlighting the types employed in this
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study. This chapter further explains the Bayesian modelling approach, offer-
ing insights into the construction of Bayesian models, Bayesian inference, and
the methods used by non-Bayesian models for parameter estimation.

• Chapter 3 – The methodology chapter presents a detailed account of the re-
search method used, offering a step-by-step walkthrough of the Knowledge
Discovery in Database (KDD) framework, which played an instrumental role
in achieving the study’s objectives. The KDD framework encompasses four
pivotal steps: (1) data collection and understanding, (2) data preprocessing
and transformation, (3) modelling, and (4) evaluation.

• Chapter 4 – The results and discussion chapter is organised into three sections.
First, data analysis results on the tutorial class attendance data are presented
and discussed. Subsequently, the model performance results are presented
and discussed. Finally, the application of the highest density interval of the
Bayesian model to quantify uncertainties in student retention predictions is
detailed.

• Chapter 5 – The conclusion chapter is split into two key sections. The first
section addresses the research questions, offering conclusive insights. The
second section directs attention to future research, outlining ways in which
this study can be extended.
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Chapter 2

Literature Review

This chapter reviews the relevant literature for the three main topics of this study.
Firstly, the types of data analytics in the education domain are discussed, highlight-
ing the type(s) adopted in this study. Secondly, the Bayesian modeling approach
is explained. Finally, existing work on the use of predictive analytics for modeling
student retention is presented, with a focus on demonstrating the commonly used
models and variables.

2.1 Types of Data Analytics in Higher Education

The expansion of data analytics in higher education is being driven by the necessity
to create innovative solutions based on data to address the challenges faced in ed-
ucation [27, 26]. This trend is further fueled by the growing amount and diversity
of data collected from both online and traditional university offerings, opening up
new possibilities for using data analytics to enhance the quality of higher education
[36]. Consequently, different terms that are closely related, such as Academic An-
alytics (AA), Educational Data Mining (EDM), and Learning Analytics (LA), have
emerged to represent distinct types of data analytics employed in higher educa-
tion [26]. These terms indicate various approaches to data analytics used in the
field. Furthermore, the outcomes of one type of data analytics can serve as input
for another, resulting in a complex and interconnected landscape of data analytics
approaches in higher education. This section will explore each type of data analyt-
ics in education and determine which ones will be used in this study.
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2.1.1 Academic Analytics

Academic Analytics is a term that is defined as “the application of data analytic
techniques and tools for purposes of supporting institutional operations and decision-
making” [26, p. 67]. The primary focus of Academic Analytics is to enhance insti-
tutional operations and decision-making processes. This process involves the use
of data analytic techniques and tools at five distinct levels, namely faculty, insti-
tutional, regional, national, and international levels [26]. It is worthy to note that
Academic Analytics offers potential benefits to a diverse range of individuals and
groups, including students, faculty, and executive officers.

The utilization of Academic Analytics can bring significant advantages to faculty
members. Through the examination of educational data, Academic Analytics has
the capability to provide important factors that contribute to student success, offer
valuable insights into effective methods, and enhance knowledge about teaching
and learning [8, 34]. Student success holds a prominent position as a key perfor-
mance indicator (KPI) in higher education, and therefore, most faculty members
are highly interested in predicting and monitoring student success. Studies have
shown that student engagement indicators, such as attendance, clicks, and time
spent on learning management systems (LMS), are crucial predictors of student
success [27]. Using Academic Analytics, faculty members can gain access to this
information and use it to inform their teaching practices.

2.1.2 Educational Data Mining

Education Data Mining is defined as “the development and evaluation of data an-
alytics methods for exploring educational data and using those methods to better
understand learners and the learning environment” [26, p. 67]. The primary objects
of interest within the field of EDM are the methods and techniques employed for the
purpose of analyzing data at various levels within the educational system, namely
departmental, faculty, and institutional levels [26]. The various methods and tech-
niques applied in EDM have been categorized in five general groups. These groups
are clustering, relationship mining, prediction, discovery with models, and distil-
lation of data for human judgement [4, 22]. Prediction methods are used to fore-
cast future outcomes, while clustering methods are applied to identify groups with
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similar attributes [26]. Relationship mining explores correlations between different
variables, and discovery with models aims to uncover hidden patterns in the data
[26]. The final group, distillation of data for human judgement, involves summariz-
ing complex data into easily interpretable formats that can aid in decision-making
[26].

2.1.3 Learning Analytics

Learning Analytics refers to “the application of data analytic techniques and tools
for purposes of understanding and enhancing learning and teaching” [26, p. 67].
The primary focus of learning analytics is the learners and the learning settings,
which are subject to data analysis at the levels of individual students, courses, and
departments [26].

As per the Society for Learning Analytics Research (SOLAR), learning analytics can
be categorized into four distinct areas, which include descriptive, diagnostic, pre-
dictive, and prescriptive analytics [33]. Descriptive analytics provides insights into
past events, and it can be achieved through the examination of student feedback
from surveys, as well as data that describes the student’s lifecycle, such as study
support, enrollments, and exams [33]. Diagnostic analytics, on the other hand, aims
to identify underlying patterns in the data. This type of analytics is achieved by an-
alyzing educational data to find key performance indicators and metrics that can be
used to enhance student engagement [33]. Predictive analytics focuses on under-
standing the future by identifying patterns in historical data and utilizing statistical
models and algorithms to capture relationships and forecast future outcomes. Ex-
amples of predictive analytics in learning analytics include predicting at-risk stu-
dents, student drop-out rates, and retention rates [32]. Lastly, prescriptive analytics
aims to offer advice on potential outcomes and recommend choices using machine
learning and business rules [33]. Through this type of analytics, institutions can
make informed decisions on the best course of action to take, given the available
data.

The various forms of data analytics in higher education vary in terms of their fo-
cus and the level of the education system they target. It has been noted before that
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the results obtained from one type of educational data analytics can be used as in-
put for another. In this study, the primary approach to data analytics employed
is a combination of academic analytics, which focuses on institutional operations
and decision making at an institutional level, and educational data mining, which
involves predicting student retention in tutorial classes also at an institutional level.

2.2 Bayesian Modeling

Bayesian modelling, grounded in the principles of probability theory, provides a
sophisticated and principled approach to dealing with uncertainty and incomplete
information [19, 23]. This section delves into the concept of modelling and the un-
derpinnings of Bayesian modelling and its distinction from non-Bayesian models.
The non-Bayesian subsection provides a clear distinction on the model estimation
methods used in Bayesian and non-Bayesian models. Mathematical formulas are
used to elucidate these concepts.

2.2.1 Bayesian Models

In the space of research and practice, models are simplified descriptions of a system
or process. Models are designed to deliberately encompass the most significant or
relevant variables of a system [18].

Computationally or otherwise Bayesian models have two defining characteristics
[19]:

• Probability distributions: Probability distributions are used to represent un-
known quantities, known as parameters.

• Bayes theorem: Bayes theorem is employed as a mechanism to update the
parameter values based on the available data.

At a high level, constructing Bayesian models involves three main steps [19]:

• Creating a model by combining and transforming random variables, based on
assumptions about how the data was generated, using available data.
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• Using Bayes theorem to condition the model to the available data. This pro-
cess is called inference, resulting in the posterior distribution. While this step
is expected to reduce uncertainty in possible parameter values, it is not guar-
anteed.

• Critiquing the model by evaluating whether it aligns with different criteria,
such as the available data and domain-knowledge expertise. This step is
necessary due to the uncertainties that practitioners or researchers may have
about the model, sometimes requiring comparison with other models.

2.2.2 Bayesian Inference

Put simply, inference involves drawing conclusions using evidence and reasoning
[23]. Bayesian inference is a particular form of statistical inference where proba-
bility distributions are combined to derive updated distributions [23]. The process
relies on Bayes theorem to estimate the value of a parameter θ based on observed
data Y.

p(θ|Y) = p(Y|θ) · p(θ)
p(Y)

(2.1)

The concept of likelihood p(Y|θ) involves incorporating data into the model, while
the prior distribution p(θ) represents knowledge about the parameters θ prior to
observing the data Y. The posterior distribution p(θ|Y), which combines the like-
lihood and prior distribution, captures all the relevant information about the prob-
lem. The marginal likelihood p(Y), which represents the probability of observing
the data across all possible parameter values, is often not computed. As a result,
Bayes theorem is typically expressed as a proportionality [19]:

p(θ|Y) ∝ p(Y|θ) · p(θ) (2.2)

In Bayesian inference, a useful quantity to compute is the posterior predictive dis-
tribution [19]:

p(Ŷ | Y) =
∫

p(Ŷ | Y) · p(θ | Y) dθ (2.3)
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The posterior predictive distribution refers to the distribution of future data, Ŷ, that
is expected based on the posterior p(θ | Y), which is derived from the model (com-
prised of the prior and likelihood) and observed data. Essentially, this represents
the data that the model predicts will be seen after analyzing the dataset. The equa-
tion for the posterior predictive distribution involves integrating over the posterior
distribution of parameters, which means that predictions are made while taking
into account the uncertainty associated with model estimates.

2.2.3 Non-Bayesian Models

In contrast to Bayesian models, non-Bayesian models typically estimate model pa-
rameters using frequentist techniques such as maximum a posteriori estimation
(MAP) or maximum likelihood estimation (MLE) [23]. These methods involve iden-
tifying a single-point estimate that maximizes the likelihood of observing the data
or the posterior probability respectively [25, 23]. Unlike Bayesian models, frequen-
tist models do not yield a full probability distribution over the model parameters,
which can hinder the ability to quantify and propagate uncertainty.

The point estimate θ in MLE is derived by maximizing the likelihood:

θ = arg max p(D | θ) (2.4)

The point estimate θ in MAP is derived by maximizing the posterior probability:

θ = arg max p(θ | D) (2.5)

Bayesian modeling, on the other hand, seeks to compute the full posterior distri-
bution over the model parameters, given the observed data [23]. This approach en-
ables a more comprehensive representation of uncertainty and allows for principled
decision-making under uncertainty [19]. Furthermore, Bayesian models can natu-
rally incorporate prior information, which can be particularly useful when dealing
with limited or noisy data [27].
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2.3 The Use of Predictive Analytics in Modeling Stu-

dent Retention

This section focuses on the application of predictive analytics in enhancing student
retention based on previous research. It discusses the predictive models employed
and important factors considered when modeling student retention within the con-
text of higher education.

The potential of data mining methods for developing predictive models to manage
student retention in higher education was proposed by Yadav, Bharadwaj, and Pal
[39]. The primary aim was to identify students who require help from the student
retention programme. The researchers implemented three decision tree classifica-
tion models: ID3, C4.5, and ADT. Their findings indicated that the inclusion of all
social, personal, environmental, and psychological variables is vital for effective
prediction of student retention rates. The variables used in the models included
gender, student category, secondary school grades, secondary school math grade,
graduation stream, graduation grade, medium of teaching, college location, admis-
sion type, and retention.

The effectiveness of predictive deep learning techniques in analyzing student learn-
ing data and predicting student retention was demonstrated by Uliyan et al. [36].
The researchers utilized the bidirectional long short-term model (BLSTM) and con-
dition random field (CRF) deep learning techniques, which accurately predicted
student retention. The researchers benchmarked these deep learning techniques
against several other models, including neural network, decision tree, random for-
est, naïve bayes, support vector machines, and logistic regression. Evaluation met-
rics such as recall, accuracy, precision, and F-score were employed to assess the
models’ performance. The predictive variables used to forecast retention included
preparatory grade-point (GPA), mathematics, physics, English, quizzes, assignments,
statistics grade, high school, and overall GPA. The study concluded that predictive
models can be valuable tools for universities to determine students at risk of dis-
continuing their studies.

The use of support vector machines and neural networks models to predict student
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retention was explored by Trivedi [35] with impacts and implications. The study
used degree, gender, age, 1st generation, high school GPA, college GPA, plans to
work, and ACT composite as input variables for the models. Interestingly, the au-
thors found that high school rank, first math course grade, SAT math score, and
pre-college intervention programmes were useful in predicting retention. This sug-
gests that non-academic factors, such as preparation programmes, may have an
impact on student retention.

The use of logistic regression was adopted to investigate whether national exam
scores or secondary GPAs are better predictors of first-year retention in higher ed-
ucation [21]. High-stakes exams are entrance exams for higher education and are
equivalent to national benchmark tests in South Africa. The study concluded by
stating that school GPA predicts retention better in higher education compared to
high-stakes national exams.

In another study, the authors assessed the performance of one deep learning algo-
rithm and twenty supervised machine learning algorithms in predicting student
retention [3]. All twenty-one algorithms were trained using the following vari-
ables: school accreditation, type of school, interest, average grades, gender, parent
age, residence, parent salary, house area, parent’s university attendance, and in-
university retention. Random forest classifier, logistic regression CV, decision tree
classifier, Nu support vector classifier (NuSVC), and linear support vector machine
were amongst the twenty-one models used. Out of the twenty-one models used,
the NuSVC algorithm emerged as the most effective machine learning method in
predicting whether students would persist in their university enrollment or not.

Based on the literature reviewed, random forest and support vector machines were
found to be the commonly used predictive models, mainly for classification tasks
such as predicting whether a student will be retained (1) or not (0) in university. The
most frequently used variables in predictive models for student retention mainly
fell under two categories of student data: student demographics and academic per-
formance. It is worth noting that all the models used predicted student retention on
an individual student level, rather than an institutional level. As a result, the types
of educational data analytics used are limited to learning analytics.
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Chapter 3

Research Methodology

This chapter outlines the research method employed in this study. It includes a
comprehensive step-by-step walk-through of the application of the Knowledge Dis-
covery in Databases framework. Additionally, the chapter introduces the Bayesian
Additive Regression Trees and Random Forest Regressor models, along with the
accompanying metrics used to assess the predictive accuracy of these models in
predicting student retention in tutorial classes. The process employed to transform
attendance data into retention data is also explained.

3.1 Research Methods

This study employs a quantitative research method which incorporates the gather-
ing of numerical secondary data and the use of mathematical, statistical, and com-
putational methods to develop models. The quantitative research method draws
its foundation from the positivism paradigm, which promotes the use of statistical
analysis and various approaches that involve Bayesian inference, inferential statis-
tics, probability theory, experimental design, as well as correlational and descriptive
designs [1]. In this study, the Knowledge Discovery in Databases framework will
be followed. The application of the KDD framework is widespread in the field of
educational data mining and academic analytics research [22, 28]. The KDD frame-
work provides a structured approach, comprising various steps, to convert raw
data into actionable insights [14]. At an abstract level, KDD is concerned with de-
veloping methods for making sense of data [13]. The primary challenge addressed
by the KDD framework is the transformation of low-level data into other forms
that may be more compact, more abstract (such as a model of the data generation
process), or more useful (for instance, a predictive model for estimating the value of
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future cases). This structured pathway facilitates the extraction of valuable patterns,
trends, and knowledge from datasets, empowering informed decision-making. The
KDD framework encompasses a series of essential steps: (1) data collection and
understanding, (2) data pre-processing and transformation, (3) modeling, and (4)
evaluation (as illustrated in Figure 3.1).

FIGURE 3.1: Knowledge discovery in database framework

3.1.1 Data Collection and Understanding

Prior to obtaining the secondary tutorship programme data, a data request letter
was submitted to Sol Plaatje University. This letter provided information on the
study’s purpose, as well as the various measures implemented to mitigate poten-
tial risks and ensure the strict confidentiality of the acquired student data. It also
provided insight into how the secondary data would be employed in the study (see
data request letter on appendix A for further details).
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The tutorship programme attendance data, sourced from the SPU database con-
sisted of two central variables: tutorial date, and encoded (anonymized) student
numbers. These two variables played a crucial role in deriving other variables used
to predict attendance-based retention in tutorial classes. The tutorial date variable
captured the dates on which students attended tutorial classes, thereby enabling
the establishment of attendance patterns and trends. Conversely, the encoded stu-
dent number variable provided encoded identifiers for each student, ensuring the
anonymity and privacy of students represented in the attendance data. These en-
coded student numbers were instrumental in tracking student retention over the
course of the tutorship programme (Table 3.1).

TABLE 3.1: Tutorship programme attendance data

Variable Description

Tutorial date Dates in which students attended tutorial classes

Encoded student number
Anonymized student number of students. Each
anonymized student number serves as a unique
identifier for each student

3.1.2 Data Pre-processing and Transformation

Data pre-processing and transformation is a key step that converts raw data into
data that is more easily and effectively processed in models for more accurate and
reliable results [28]. Firstly, data pre-processing was conducted to identify and han-
dle missing data, mismatched data types, mixed data values, inconsistent data, and
outliers. Secondly, data transformation was carried out through cohort analysis
and data encoding. Cohort analysis is an analytical method that divides data into
related groups called cohorts [20]. These cohorts share a common characteristic
within a defined timespan. In this study cohorts were defined by the month in
which students first started attending tutorial classes. The cohort analysis trans-
formed TP attendance data to retention data. The transformed TP attendance data
after cohort analysis consisted of 53 observations. Table 3.2 shows the description
of variables derived from tutorial date, and encoded student numbers after cohort
analysis.
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Lastly, data encoding was applied to cohort and period as they were in date for-
mats. The data encoding process involved transforming cohort and period into
numeric formats that can be used as input in the modeling step.

TABLE 3.2: Tutorship programme attendance data after cohort analy-
sis

Variable Description

Cohort The date students started attending tutorials.

Period The date students stopped attending tutorials.

Cohort Age The difference between the period and cohort, in
days.

Students The number of students that started attending tu-
torials for a particular cohort.

Active Students The number of students currently attending tuto-
rials at a particular period.

Retention The number of active students divided by the
number of students.

3.1.3 Modeling

In this study two models were implemented: the Random Forest Regressor (RFR)
and Bayesian Addictive Regression Trees (BART). These models were implemented
using historical TP attendance data to predict attendance-based retention in tutorial
classes. The Random Forest Regressor was selected as the benchmark model to
enable a robust performance comparison against the Bayesian Additive Regression
Trees.

Random Forest Regressor

The RFR is a robust ensemble regression technique that leverages the combined
power of multiple decision trees and employs a technique called bootstrapping and
aggregation to improve predictive accuracy [6]. This technique provides several ad-
vantages, making it a valuable tool in modeling. From a computational perspective,
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the RFR offers several key strengths. It is known for its efficiency, as it is relatively
fast both during the training phase and when making predictions. This speed is a
result of its parallelizable nature, which allows for efficient implementation across
high-dimensional datasets. The RFR depends on only one or two tuning parame-
ters, which simplifies the modeling process. Additionally, it incorporates a built-in
estimate of generalization error, aiding in the assessment of model performance and
the prevention of overfitting [12].

The core principle of the RFR is to ensemble decision trees, combining their in-
dividual predictions to produce a more accurate and robust final output [31]. This
is achieved through a process known as bootstrapping. When constructing the en-
semble, the RFR algorithm repeatedly selects random samples with replacement
from the original dataset. For each of these bootstrap samples, decision trees are
trained to predict the response variables based on the corresponding variables.
Specifically, for each iteration b (where b ranges from 1 to B, the number of boot-
strapped samples), a random sample is drawn with replacement from the dataset
(x, Y), yielding (xb, Yb). A decision tree regression model denoted as fb is then
trained on this sample. After completing the training phase for all B decision trees,
the RFR is ready to make predictions. When presented with a new data point
x‘ the ensemble regression model aggregates the predictions from all B individ-
ual decision trees to arrive at the final prediction. This aggregation is performed
by calculating the average of the predictions made by each tree, represented as
f̂ = 1

B ∑B
b=1 fb(x‘).

The RFR’s strength lies in its ability to reduce overfitting, improve model robust-
ness, and enhance predictive accuracy through the combination of multiple deci-
sion trees [28, 31]. The RFR model was constructed using the default RFR model
parameters as specified by Sklearn (see appendix C Figure C.2).

Bayesian Additive Regression Trees

BART is a recent statistical approach that merges the principles of ensemble learn-
ing with nonparametric regression [11, 15, 17, 40]. What distinguishes BART is its
construction within a Bayesian approach, enabling the quantification of prediction
uncertainty through a model-based approach [15, 28, 37, 40]. BART’s novelty lies in
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its capacity to adapt to complex relationships in the data while providing a robust
and probabilistically grounded means of assessing predictive uncertainty, which
sets it apart from traditional regression methods [40]. Mathematically, the BART
model is represented as:

E[Y] = ϕ

(
m

∑
j=0

gj(X; Tj, Mj, θ)

)
(3.1)

Where X represents the model covariates (independent variables), each gj is a tree
of the form g(X; Tj, Mj), where Tj represents the structure of a binary tree, i.e., the
set of internal nodes and their associated decision rules, and a set of terminal nodes.
While Mj = {µ1,j, µ2,j, . . . , µb,j} represents the values at the bj terminal nodes, ϕ rep-
resents an arbitrary probability distribution that will be used as the likelihood in the
model, and θ represents other parameters not modeled as a sum of trees [19].

In this study the BART model was specified as follows:

Nactive students ∼ Bin(Nstudents, p) (3.2)

logit(p) = BART(cohort age, month) (3.3)

Where Bin(Nstudents, p) represents the likelihood probability distribution for the
number of active students. This likelihood was used to indicate that the num-
ber of active students follows a binomial distribution. The selection of a Bino-
mial likelihood in the BART model was motivated by its suitability for count data,
reflecting the act of counting active students within a group of students. Here,
p represents the retention rate. In the BART model, the logit function given by
logit(p) = log

(
p

1−p

)
was used as a transformation function to map the reten-

tion rate to the range (−∞,+∞) so that the range is not constrained to (0, 1). The
logit transformation allowed for a flexible and non-linear estimation of log-odds of
success, accounting for the complex interactions between cohort age and month.
To interpret the results in terms of retention rate (0, 1), the inverse logit function,
p =

exp(logit)
1+exp(logit) , was used, where logit represents the log-odds value. This transfor-

mation allowed the conversion of the model’s log-odds back into the (0, 1) range,
enabling the estimation of a retention rate at a given time point (see appendix C
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Figure C.1 for BART model code implementation).

Figure 3.2 shows the graphical representation of the BART model with a bino-
mial likelihood. The BART model was fitted using the default pymc Markov chain
Monte Carlo (MCMC) algorithm to generate 2000 samples of all model parameters
and predictions from the corresponding posterior probability distributions.

FIGURE 3.2: Graphical representation of the BART model with a bino-
mial likelihood
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3.1.4 Evaluation

The retention variable in tutorial classes was modeled as a continuous variable that
ranges between 0 and 1, where 0 means 0% of the students are retained in tutorial
classes, while 1 means 100% of the students are retained in tutorial classes. The re-
tention prediction error was evaluated using six metrices that are commonly used
for continuous variables, namely minimum error, maximum error, mean absolute
error (MAE), median absolute error (MedAE), root mean squared error (RMSE),
and coefficient of determination. Each evaluation metric captures different aspects
of model performance. By using all six of these metrics, a more comprehensive
assessment of model performance was provided. This allowed the analysis of var-
ious facets such as the range of errors (minimum and maximum), average errors
(MAE), robustness to outliers (MedAE), precision (RMSE), and the proportion of
variance explained (coefficient of determination). In the error metric calculations,
ŷi represents the predicted value of the i − th sample and yi is the corresponding
true value.

Coefficient of Determination (R-squared Score)

The R-squared was used to quantify the proportion of variance in the retention vari-
able explained by the model. It ranges from 0 to 1, where a higher value indicates a
better fit. R-squared of 1 means the model perfectly predicts the retention, while 0
means the model fails to explain any variation [10, 30].

The estimated R2 is defined as:

R2(y, ŷ) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (3.4)

where ∑n
i=1(yi − ŷi)

2 = ∑n
i=1 ϵ2

i and ȳ = 1
n ∑n

i=1 yi.

Mean Absolute Error

The MAE was used to calculate the average absolute difference between the pre-
dicted retention and actual retention values. The MAE provides a measure of the
average magnitude of errors, regardless of their direction. Lower MAE indicates
better accuracy and closer predictions to the ground truth [16, 30].
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The MAE estimated over nsamples is defined as:

MAE(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

|yi − ŷi| (3.5)

Median Absolute Error

Like MAE, the median absolute error was used to provide a measure of the average
magnitude of errors. However, instead of averaging the errors, the median value
was considered. The MedAE is less sensitive to outliers compared to MAE, making
it a robust metric [30].

The MedAE estimated over nsamples is defined as:

MedAE(y, ŷ) = median(|y1 − ŷ1|, . . . , |yn − ŷn|) (3.6)

Root Mean Squared Error

The RMSE was used to calculate the square root measure of the squared differences
between the predicted retention and actual retention values. RMSE penalizes larger
error values. A lower RMSE indicates better precision [16, 30].

The RMSE estimated over nsamples is defined as:

RMSE(y, ŷ) =

√√√√ 1
nsamples

nsamples−1

∑
i=0

(yi − ŷi)2 (3.7)

Maximum Error

The maximum error was calculated to represent the largest deviation between the
predicted retention values and actual retention values. It was used to capture the
worst-case error between the predicted retention value and the true retention value
[30].
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The maximum error is defined as:

Max Error(y, ŷ) = max(|yi − ŷi|) (3.8)

Minimum Error

The minimum error was calculated to represent the smallest deviation between the
predicted retention values and actual retention values.

The minimum error is defined as:

Min Error(y, ŷ) = min(|yi − ŷi|) (3.9)
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Chapter 4

Results and Discussion

The findings in this chapter are structured into sections covering descriptive analy-
sis, model evaluation, BART model highest density Interval estimates, and tutorial
attendance dashboard. Initially, the chapter unveils descriptive analysis results, fea-
turing a statistical summary of tutorial class attendance data. This is followed by a
time series analysis of student retention rates. Subsequently, the chapter delves into
the presentation of model performance results. Lastly, it demonstrates the practical
application of the highest density interval for uncertainty quantification and intro-
duces the tutorial class attendance dashboard.

4.1 Descriptive Analysis

After applying the methods for data preprocessing and transformation described
in section 3.1.2, six variables were derived: ’Cohort’, ’Period’, ’Cohort Age’, ’Stu-
dents’, ’Active Students’, and ’Retention’.

Table 4.1 presents a comprehensive overview of key descriptive statistics for the
six variables of interest. The ’Cohort’ and ’Period’ variables, representing the start
and end dates of student attendance, do not have meaningful measures like means,
medians, or standard deviations due to their date nature; however, they provide
a range, with ’Cohort’ spanning from 1 January 2022 to 1 October 2022, and ’Pe-
riod’ ranging from 1 March 2022 to 1 December 2022. ’Cohort Age’ has a mean of
141.62 days, indicating that, on average, students attended tutorials for this dura-
tion. The median of 122 days shows the typical duration, while a standard deviation
of 85.69 days reflects some variation. On average 183.60 ’Students’ are present in
tutorial classes in any given day, with considerable variability (standard deviation
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of 155.08) between cohorts, ranging from a minimum of 10 to a maximum of 421
students. ’Active Students’ has an average of 50.87 and a median of 32, indicating
the typical number of students actively participating, with significant variability
(standard deviation of 65.17). ‘Retention’ showcases an average retention rate of
33.34%, a typical rate of 24.23%, and a standard deviation of 28.54%, reflecting the
diversity in how well students are retained, with rates ranging from a minimum of
0.45% to a maximum of 94.92%. These statistics provide valuable insights into the
dynamics of student participation and retention in this study.

TABLE 4.1: Descriptive statistics of variables of interest

Variable Mean Median Std. Dev. Max Min

Cohort - - - 2022-10-01 2022-01-01

Period - - - 2022-12-01 2022-03-01

Cohort Age 141.6226 122 85.6869 344 28

Students 183.6038 80 155.0793 421 10

Active Students 50.8679 32 65.1652 263 1

Retention 33.34 % 24.23 % 28.54 % 94.92 % 0.45 %

Figure 4.1 displays the variation in retention rates over time across nine differ-
ent cohorts. Each cohort indicates the starting date of students attending tutorial
classes. The retention rate is at its highest when students commence their tutorial
classes and gradually decreases until June (2022-06) and July (2022-07), after which
it increases again and then decreases towards November (2022-11) and December
(2022-12). Notably, the June, July, November, and December period coincides with
mid-year and end-year exams and the semester break, during which the retention
rate is at its lowest, suggesting that students discontinue attending tutorial classes
to focus on exam preparation with a holiday break happening after. This illustrates
a clear seasonality component in the retention, as depicted in Figure 4.1, where sea-
sonality peaks decrease over time for each cohort of students.

The presence of seasonality in student retention rates highlights its nonlinearity.
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FIGURE 4.1: Retention by cohort and period

This nonlinearity is evident in the fluctuating retention rates across various peri-
ods, driven by factors like exam periods and holiday seasons. Using nonlinear
models, such as BART and RFR, is crucial for capturing these non-linear patterns
in student retention rates. These models offer the necessary flexibility to capture
complex relationships, handle interactions, and effectively adapt to the nonlinear
patterns within the data [40].

4.2 Model Evaluation

The BART model with a Binomial likelihood is assessed in comparison to the RFR
using six key metrics: R-squared, MAE, RMSE, MedAE, Max Error, and Min Error.
Student retention, ranging from 0% to 100%, serves as a critical indicator, represent-
ing the percentage of students retained in tutorial classes.

Table 4.2 displays the results for BART with a Binomial likelihood and the RFR
model. BART demonstrates strong predictive capabilities, outperforming RFR across
all key evaluation metrics. With a significantly higher R2 score of 0.9414 compared
to RFR’s 0.9150, indicating that BART effectively captures a greater proportion of
the variance in student retention. Additionally, BART yields a lower MAE of 4.75%
as opposed to RFR’s 6.66%, indicating more accurate predictions on average. The
RMSE for BART (6.85%) is also lower than that of RFR (8.25%), signifying that its
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predictions are generally more precise. The MedAE of 3% for BART reflects its con-
sistency in providing predictions close to the actual retention, while RFR shows a
MedAE of 6%. Furthermore, BART achieves a slightly lower maximum error (19%)
compared to RFR (20%). Both models exhibit a minimum error of 0%, indicating
accurate predictions in some instances.

TABLE 4.2: BART and RFR model evaluation

Model R2 Score MAE RMSE MedAE Max Error Min Error

BART 0.9414 4.75 % 6.85 % 3 % 19 % 0 %

RFR 0.9150 6.66 % 8.25 % 6 % 20 % 0 %

The BART model demonstrates stronger predictive capabilities in predicting stu-
dent retention in tutorial classes as compared to RFR, this would make BART a
preferred choice for educational institutions in need of robust predictive capabili-
ties.

4.3 BART Model Highest Density Interval Estimates

Figure 4.2 and Figure 4.3 show the 94% highest density interval (HDI) uncertainty
estimates for a set of individual cohorts. The HDI is a range of values that captures
a certain percentage of a model’s parameters [19]. It provides a measure of the un-
certainty in the parameter’s value and can be used to make inferences about the
parameter [19]. The 94% HDI in Figure 4.2 and Figure 4.3 is a range that captures
94% of the posterior distribution of BART parameters. This means that there is a
94% probability that the true retention rate falls within this interval. A wide HDI
interval is an indication of great uncertainty, while a narrow HDI interval is an indi-
cation of great certainty. Narrower HDIs indicate more reliable predictions as they
suggest the model has effectively minimized uncertainty. This precision leads to a
higher level of confidence in the prediction, offering a more trustworthy basis for
decision-making. Precision in the context of HDIs refers to the narrowness of the
interval that captures the range of plausible values for a prediction [27].
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In Figure 4.2 and Figure 4.3, the 94% HDI interval is wide for cohorts 2022-01, 2022-
02, 2022-06, 2022-08, and 2022-09, indicating great uncertainty in the BART model’s
predictions for student retention in these cohorts. Conversely, the 94% interval is
narrow for cohorts 2022-03, 2022-04, and 2022-05, indicating a great level of cer-
tainty and reliability in the BART model’s predictions for student retention in these
cohorts.

FIGURE 4.2: BART 94% HDI for 2022-01 to 2022-04 cohorts

FIGURE 4.3: BART 94% HDI for 2022-05 to 2022-09 cohorts

The high degree of certainty observed in cohorts 2022-03 to 2022-05, as evident
by the 94% HDI closely aligning with the observed retention rate, underscores the
BART model’s accuracy in predicting student retentions from the onset of tutorials
to just before the start of exams. In situations requiring a single prediction (point
estimate), such a prediction can be obtained by calculating the average or median
of the predicted retention values within the 94% HDI.
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4.4 Tutorial Class Attendance Dashboard

One significant contribution was the development of a dashboard tailored for the
CTLPD. This dashboard serves the dual purpose of predicting future attendance-
based retention rates and offering detailed insights into TP attendance-based reten-
tion rates. The dashboard was developed using ’Shiny’, a web application frame-
work with interactive analytical capabilities [29].

Within the dashboard, the ’Retention Prediction’ tab shown in Figure 4.4 hosts an
intuitive ’Retention Model Inputs’ section. This section enables education staff to
input crucial data points, including the start date of student attendance in tuto-
rial classes, the current count of attending students, and the desired projection pe-
riod in weeks for attendance-based retention rates. Additionally, the inclusion of
a ’Data-driven Decisions’ button provides guidance on using the attendance-based
retention predictive model for informed insights (refer to appendix D for detailed
instructions). The accompanying line chart, positioned on the right, visualizes pre-
dicted attendance-based retention rates for a user-defined duration. The chart dis-
tinguishes future retention rates surpassing the institution’s average (depicted in
green) from those falling below it (depicted in red).

FIGURE 4.4: Retention prediction dashboard tab

Moreover, the ‘Cohort Analytics‘ tab in Figure 4.5 provides in-depth descriptive
analytics pertaining to different student cohorts starting tutorial classes in specific
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months and weeks throughout the year. These analytical insights have the same
interpretation as the descriptive analysis provided in section 4.1, serving to outline
and summarize attendance and retention patterns within tutorial classes.

FIGURE 4.5: Cohort analytics dashboard tab
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Chapter 5

Conclusions

This chapter is split into two sections. The first section addresses the research ques-
tions, offering conclusive insights. The second section directs attention to potential
for future research, outlining ways in which this study can be extended.

5.1 Answers to Research Questions

RQ 1: To what extent does the performance of a Bayesian model differ from that of a non-
Bayesian model in terms of predicting retention in tutorial classes, as evaluated using met-
rics including minimum error, maximum error, mean absolute error, median absolute error,
root mean squared error, and coefficient of determination?

On average, the Bayesian Additive Regression Tree model outperformed the Ran-
dom Forest Regressor model by approximately 20% when predicting retention in
tutorial classes across five error metrics, including minimum error, maximum er-
ror, mean absolute error, median absolute error, and root mean squared error. In
specific terms, the BART model exhibits an average prediction error of 6.72% when
predicting retention rates on a 0 to 100% scale, while the RFR model displays an
average error of 8.182%. Furthermore, BART achieves a higher coefficient of de-
termination (0.9414) compared to RFR’s (0.9150), indicating that BART effectively
captures a greater proportion of the variance in student retention.

While the difference in error metrics between BART and RFR may not be sub-
stantial, BART demonstrates stronger predictive capabilities in estimating student
retention. These performance distinctions stem from the fundamental differences
in their methodologies. BART operates within a Bayesian framework, accounting
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for parameter uncertainties and employing probabilistic models for each decision
tree. In contrast, the Random Forest Regressor relies on creating an ensemble of
decision trees through bootstrapping and aggregation without explicit probabilis-
tic modeling. BART also offers more flexibility in modeling complex relationships
but can be computationally more demanding than Random Forest Regressor. Ad-
ditionally, BART may involve more tuning parameters than the user-friendly and
straightforward Random Forest Regressor. These distinctions emphasize the vari-
ations in their underlying methodologies and suitability for specific applications.
When choosing a model for predicting retention in tutorial classes, it is essential to
consider these differences, even though their performance differences may appear
minor.

RQ 2: How can the highest density interval be used to summarize the uncertainty in reten-
tion predictions and make inferences about retention in tutorial classes?

The Highest Density Interval can be used to obtain the worst-case and best-case
scenarios, as the lower and upper bounds of the HDI can be considered as the
worst-case and best-case when predicting student retention rates. Large differences
between the lower bound and upper bounds of the HDI can be used to signify great
uncertainty while small differences can be used to signify great certainty.

The lower bound value of the HDI can be used to identify the minimum level of
support needed to maintain student retention at a reasonable level, while the up-
per bound value can be used to determine the maximum impact that a support
programme is likely to have on student retention in tutorial classes.

5.2 Future Work

This study mainly focused on the development of a single Bayesian model to pre-
dict retention in tutorial classes using derived variables from cohort analysis. Tu-
torship support is one of the various student support programmes that institutions
have. Future work can extend this study by exploring the development and im-
plementation of different machine learning and statistical models for predicting
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student retention within different student support programmes for timely inter-
ventions. Furthermore, future studies can focus on incorporating a broader range
of student data variables with the application of interpretable machine learning
techniques to explain key factors that influence student retention within student
support programmes.

The Bayesian approach is one of the established methods for achieving uncertainty
quantification in the context of model parameters and predictions. In addition to
Bayesian methods, Conformal Prediction (CP) represents another robust statistical
framework for quantifying uncertainty. CP excels in generating prediction regions
that capture the inherent variability of point predictions, adding an essential layer
of reliability to predictive modeling [2]. Leveraging CP within the context of stu-
dent retention predictive models can provide a means to enhance the reliability and
precision of machine learning model predictions.

Finally, the importance and relevance of this study extends to various stakeholders
in the educational ecosystem. Educational institutions, administrators, and policy-
makers can benefit from the research findings by gaining insights into how future
tutorship programme student retention rates can be predicted. This information
can help various stakeholders in the educational ecosystem develop tailored inter-
vention strategies to improve student retention. Tutorship programme coordina-
tors can use the predictive model(s) to identify periods of low or high retention and
implement timely interventions to encourage engagement accordingly. Moreover,
the foresight provided by the expected student retentions can assist in strategic re-
source allocation, enabling more informed planning and budgeting for tutorship
support programmes.
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Appendix A

Data Request Letter

FIGURE A.1: Data request letter page 1
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FIGURE A.2: Data request letter page 2
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Appendix B

Ethical Clearance

FIGURE B.1: Ethical clearance letter
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Appendix C

Model Specifications and Predictive
Results

C.1 Model Specification

FIGURE C.1: Binomial likelihood Bayesian additive regression trees
model code
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FIGURE C.2: Random forest regressor default Sklearn model

C.2 BART Model Posterior Predictive Results

FIGURE C.3: BART model posterior predictive check
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FIGURE C.4: BART model posterior predictive mean
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Appendix D

Tutorial Attendance Dashboard Modal

FIGURE D.1: Tutorial attendance dashboard data-driven decision
modal
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