dc.contributor.author |
Nkonkobe, Sithembele
|
|
dc.contributor.author |
Bényi, Beáta
|
|
dc.contributor.author |
Corcino, Roberto
|
|
dc.contributor.author |
Corcino, Cristina
|
|
dc.date.accessioned |
2021-08-30T10:25:24Z |
|
dc.date.available |
2021-08-30T10:25:24Z |
|
dc.date.issued |
2020 |
|
dc.identifier.issn |
0012-365X |
|
dc.identifier.uri |
https://doi.org/10.1016/j.disc.2019.111729
0 |
|
dc.description.abstract |
A barred preferential arrangement is a preferential arrangement, onto which in-between the blocks of the preferential arrangement a number of identical bars are inserted. We offer a generalisation of barred preferential arrangements by making use of the generalised Stirling numbers proposed by Hsu and Shiue (1998). We discuss how these generalisedbarredpreferentialarrangementsofferaunifiedcombinatorialinterpretation of geometric polynomials. We also discuss asymptotic properties of these numbers. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Discrete Mathematics |
en_US |
dc.relation.ispartofseries |
volume 343;no 3 |
|
dc.subject |
Preferential arrangement |
en_US |
dc.subject |
Barred preferential arrangement |
en_US |
dc.subject |
Geometric polynomial |
en_US |
dc.title |
A combinatorial analysis of higher-order generalised geometric polynomials: A generalisation of barred preferential |
en_US |
dc.type |
Article |
en_US |